Secretome of human amniotic membrane stem cells promote recovery and testicular functions through modulating SIRT1/NRF2/TNF-α pathway in mice testicular torsion: An experimental study.

IF 1.6 Q3 OBSTETRICS & GYNECOLOGY
International Journal of Reproductive Biomedicine Pub Date : 2024-12-02 eCollection Date: 2024-10-01 DOI:10.18502/ijrm.v22i10.17670
Roghayeh Esfehani, Farnaz Khadivi, Jamal Valipour, Maryam Shabani, Mahya Ramesh, Parinaz Javanbakht, Davood Zarini, Sina Mojaverrostami, Masih Hoseini
{"title":"Secretome of human amniotic membrane stem cells promote recovery and testicular functions through modulating <i>SIRT1/NRF2/TNF-α</i> pathway in mice testicular torsion: An experimental study.","authors":"Roghayeh Esfehani, Farnaz Khadivi, Jamal Valipour, Maryam Shabani, Mahya Ramesh, Parinaz Javanbakht, Davood Zarini, Sina Mojaverrostami, Masih Hoseini","doi":"10.18502/ijrm.v22i10.17670","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Testicular ischemia/reperfusion injury, a significant result of testicular torsion, can lead to the risk of male infertility.</p><p><strong>Objective: </strong>The current study aimed to evaluate the effect of human amniotic membrane-derived mesenchymal stem cells (hAMSCs) secretome on testicular torsion/detorsion (T/D) in mice.</p><p><strong>Materials and methods: </strong>All the experiments were performed in the Anatomy Department of Tehran University of Medical Sciences, Tehran, Iran, during the period of March 2023 to December 2023. 40 male NMRI mice (5-7 wk, 25-30 gr) were randomized into: 1) the sham group: mice received sham operations with no other interventions, 2) T/D group, 3) negative control group; torsion detorsion + intratesticular injection of Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12, and 4) the T/D group + hAMSCs secreted factors. Serum testosterone levels, hematoxylin and eosin staining, and sperm quality parameters were used to evaluate the therapeutic effects of hAMSCs secreted factors on the testicular structure and function. Tissue oxidative stress was measured by determining malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase-1. Nuclear factor erythroid 2-related factor 2, Kelch-like ECH-associated protein 1, NAD-dependent deacetylase sirtuin-1, tumor necrosis factor-alpha and tumor protein P53 mRNA expressions were assessed in testis via real-time polymerase chain reaction.</p><p><strong>Results: </strong>The results showed that hAMSCs secreted factors alleviated testicular T/D injury by attenuating oxidative stress, inflammatory response, and apoptosis via modulating the sirtuin-1/ nuclear factor erythroid 2-related factor 2/tumor necrosis factor-alpha signaling pathway.</p><p><strong>Conclusion: </strong>hAMSCs secreted factors increased antioxidative, anti-inflammatory, and antiapoptotic properties which consequently increased testosterone levels, spermatogenesis, and sperm quality parameters.</p>","PeriodicalId":14386,"journal":{"name":"International Journal of Reproductive Biomedicine","volume":"22 10","pages":"821-836"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reproductive Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijrm.v22i10.17670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Testicular ischemia/reperfusion injury, a significant result of testicular torsion, can lead to the risk of male infertility.

Objective: The current study aimed to evaluate the effect of human amniotic membrane-derived mesenchymal stem cells (hAMSCs) secretome on testicular torsion/detorsion (T/D) in mice.

Materials and methods: All the experiments were performed in the Anatomy Department of Tehran University of Medical Sciences, Tehran, Iran, during the period of March 2023 to December 2023. 40 male NMRI mice (5-7 wk, 25-30 gr) were randomized into: 1) the sham group: mice received sham operations with no other interventions, 2) T/D group, 3) negative control group; torsion detorsion + intratesticular injection of Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12, and 4) the T/D group + hAMSCs secreted factors. Serum testosterone levels, hematoxylin and eosin staining, and sperm quality parameters were used to evaluate the therapeutic effects of hAMSCs secreted factors on the testicular structure and function. Tissue oxidative stress was measured by determining malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase-1. Nuclear factor erythroid 2-related factor 2, Kelch-like ECH-associated protein 1, NAD-dependent deacetylase sirtuin-1, tumor necrosis factor-alpha and tumor protein P53 mRNA expressions were assessed in testis via real-time polymerase chain reaction.

Results: The results showed that hAMSCs secreted factors alleviated testicular T/D injury by attenuating oxidative stress, inflammatory response, and apoptosis via modulating the sirtuin-1/ nuclear factor erythroid 2-related factor 2/tumor necrosis factor-alpha signaling pathway.

Conclusion: hAMSCs secreted factors increased antioxidative, anti-inflammatory, and antiapoptotic properties which consequently increased testosterone levels, spermatogenesis, and sperm quality parameters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
93
审稿时长
16 weeks
期刊介绍: The International Journal of Reproductive BioMedicine (IJRM), formerly published as "Iranian Journal of Reproductive Medicine (ISSN: 1680-6433)", is an international monthly scientific journal for who treat and investigate problems of infertility and human reproductive disorders. This journal accepts Original Papers, Review Articles, Short Communications, Case Reports, Photo Clinics, and Letters to the Editor in the fields of fertility and infertility, ethical and social issues of assisted reproductive technologies, cellular and molecular biology of reproduction including the development of gametes and early embryos, assisted reproductive technologies in model system and in a clinical environment, reproductive endocrinology, andrology, epidemiology, pathology, genetics, oncology, surgery, psychology, and physiology. Emerging topics including cloning and stem cells are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信