{"title":"Innovative logic \"AND\" gate gene circuits for bladder cancer treatment: preclinical study.","authors":"Chaojie Xu, Ying Dong, Dongchen Pei, Xintao Zhang, Xiaohong Han, Congcong Cao, Baorui Wu, Changning Lv, Zhengjun Kang, Liqun Zhou, Yuchen Liu, Lin Yao","doi":"10.1097/JS9.0000000000002270","DOIUrl":null,"url":null,"abstract":"<p><p>In the evolving field of precision oncology, the synthesis of gene circuits that specifically target cancer cells while preserving normal tissue marks a significant breakthrough. However, traditional approaches typically concentrate on single-gene targets, lacking the directed recognition and control among the intricate networks of signaling pathways. Our study presents a synthetic gene circuit, the Logic \"AND\" Gate Dual-Target Genetic Circuit (LAG-DTGC), which integrates multiple signals to achieve comprehensive reprogramming of various signaling pathways in bladder cancer (BC) cells. This circuit's development hinged on detailed bioinformatics analysis, pinpointing more unique biomarkers with similar expression pattern in BC. LAG-DTGC is engineered to selectively activate in cells where these biomarkers are abnormally expressed. Its precision and the remodeling cell behavior capability are further enhanced by incorporating a logic \"AND\" gate, triggering the circuit only in the presence of these aberrant cancer-specific biomarkers. LAG-DTGC exhibits an extraordinary ability to reprogram cancer cell signaling pathways, turning the cells' own mechanisms against them for therapeutic effect. This work highlights the potential of synthetic biology in developing precise, less toxic treatments for BC. The LAG-DTGC represents a promising new paradigm in cancer therapy.</p>","PeriodicalId":14401,"journal":{"name":"International journal of surgery","volume":" ","pages":"2735-2751"},"PeriodicalIF":12.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/JS9.0000000000002270","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
In the evolving field of precision oncology, the synthesis of gene circuits that specifically target cancer cells while preserving normal tissue marks a significant breakthrough. However, traditional approaches typically concentrate on single-gene targets, lacking the directed recognition and control among the intricate networks of signaling pathways. Our study presents a synthetic gene circuit, the Logic "AND" Gate Dual-Target Genetic Circuit (LAG-DTGC), which integrates multiple signals to achieve comprehensive reprogramming of various signaling pathways in bladder cancer (BC) cells. This circuit's development hinged on detailed bioinformatics analysis, pinpointing more unique biomarkers with similar expression pattern in BC. LAG-DTGC is engineered to selectively activate in cells where these biomarkers are abnormally expressed. Its precision and the remodeling cell behavior capability are further enhanced by incorporating a logic "AND" gate, triggering the circuit only in the presence of these aberrant cancer-specific biomarkers. LAG-DTGC exhibits an extraordinary ability to reprogram cancer cell signaling pathways, turning the cells' own mechanisms against them for therapeutic effect. This work highlights the potential of synthetic biology in developing precise, less toxic treatments for BC. The LAG-DTGC represents a promising new paradigm in cancer therapy.
期刊介绍:
The International Journal of Surgery (IJS) has a broad scope, encompassing all surgical specialties. Its primary objective is to facilitate the exchange of crucial ideas and lines of thought between and across these specialties.By doing so, the journal aims to counter the growing trend of increasing sub-specialization, which can result in "tunnel-vision" and the isolation of significant surgical advancements within specific specialties.