Synergistic effect of cold atmospheric plasma and methylene blue loaded nano micelles on treating human glioblastoma cells: An in vitro and molecular dynamics study.

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Elahe Ahmadi, Armin Imanparast, Mehdi Hoseini, Shahrokh Naseri, Samaneh Soudmand Salarabadi, Ameneh Sazgarnia
{"title":"Synergistic effect of cold atmospheric plasma and methylene blue loaded nano micelles on treating human glioblastoma cells: An in vitro and molecular dynamics study.","authors":"Elahe Ahmadi, Armin Imanparast, Mehdi Hoseini, Shahrokh Naseri, Samaneh Soudmand Salarabadi, Ameneh Sazgarnia","doi":"10.22038/ijbms.2024.79858.17304","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>One of the most recent cancer treatment methods is cold atmospheric plasma (CAP), which destroys cancer cells without affecting healthy cells. Also, the created photons in the CAP flame can be used to excite a proper photosensitizing agent (PS). Therefore, using nano micelle systems containing a proper photosensitizer may be beneficial in raising the treatment efficacy of CAP. In this study, we utilized molecular dynamics (MD) simulation to optimize a nano micellar system containing methylene blue to take advantage of the induced photodynamic effect of a CAP generator with helium gas on a glioblastoma cell line.</p><p><strong>Materials and methods: </strong>Some micelle properties were first determined and optimized by MD with GROMACS software. Then, micelles containing methylene blue (Micelle-MB) and free methylene blue (MB) at various concentrations were prepared. Singlet oxygen dosimetry using 1,3-diphenylisobenzofuran (DPBF)was performed in the presence and absence of Micelle-MB and MB. Subsequently, the cytotoxicity of MB and Micelle-MB was evaluated on U87-MG cancer cells, and their half-maximal inhibitory concentrations (IC<sub>50</sub>) were determined. After 48 hr of treatment, the percentage of cell survival was determined using the MTT test. The experiments were repeated at least three times. The synergy index was selected to compare the results.</p><p><strong>Results: </strong>Treatment with CAP and MB reduced the survival rate compared to the PS-free group with CAP. Results of singlet oxygen dosimetry showed that Micelle-MB might be more efficient in producing ROS. CAP treatment with Micelle-MB resulted in more cell death than free MB. In addition, cell viability decreased in Micelle-MB groups with increasing irradiation time in the three investigated irradiation times.</p><p><strong>Conclusion: </strong>Using Micelle-MB in the CAP treatment improves treatment efficiency in the U87-MG cell line.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 3","pages":"299-309"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.79858.17304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: One of the most recent cancer treatment methods is cold atmospheric plasma (CAP), which destroys cancer cells without affecting healthy cells. Also, the created photons in the CAP flame can be used to excite a proper photosensitizing agent (PS). Therefore, using nano micelle systems containing a proper photosensitizer may be beneficial in raising the treatment efficacy of CAP. In this study, we utilized molecular dynamics (MD) simulation to optimize a nano micellar system containing methylene blue to take advantage of the induced photodynamic effect of a CAP generator with helium gas on a glioblastoma cell line.

Materials and methods: Some micelle properties were first determined and optimized by MD with GROMACS software. Then, micelles containing methylene blue (Micelle-MB) and free methylene blue (MB) at various concentrations were prepared. Singlet oxygen dosimetry using 1,3-diphenylisobenzofuran (DPBF)was performed in the presence and absence of Micelle-MB and MB. Subsequently, the cytotoxicity of MB and Micelle-MB was evaluated on U87-MG cancer cells, and their half-maximal inhibitory concentrations (IC50) were determined. After 48 hr of treatment, the percentage of cell survival was determined using the MTT test. The experiments were repeated at least three times. The synergy index was selected to compare the results.

Results: Treatment with CAP and MB reduced the survival rate compared to the PS-free group with CAP. Results of singlet oxygen dosimetry showed that Micelle-MB might be more efficient in producing ROS. CAP treatment with Micelle-MB resulted in more cell death than free MB. In addition, cell viability decreased in Micelle-MB groups with increasing irradiation time in the three investigated irradiation times.

Conclusion: Using Micelle-MB in the CAP treatment improves treatment efficiency in the U87-MG cell line.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian Journal of Basic Medical Sciences
Iranian Journal of Basic Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-PHARMACOLOGY & PHARMACY
CiteScore
4.00
自引率
4.50%
发文量
142
审稿时长
6-12 weeks
期刊介绍: The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信