Single-cell omics in inflammatory bowel disease: recent insights and future clinical applications.

IF 23 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gut Pub Date : 2025-02-04 DOI:10.1136/gutjnl-2024-334165
Victoria Gudiño, Raquel Bartolomé-Casado, Azucena Salas
{"title":"Single-cell omics in inflammatory bowel disease: recent insights and future clinical applications.","authors":"Victoria Gudiño, Raquel Bartolomé-Casado, Azucena Salas","doi":"10.1136/gutjnl-2024-334165","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBDs), which include ulcerative colitis (UC) and Crohn's disease (CD), are chronic conditions characterised by inflammation of the intestinal tract. Alterations in virtually all intestinal cell types, including immune, epithelial and stromal cells, have been described in these diseases. The study of IBD has historically relied on bulk transcriptomics, but this method averages signals across diverse cell types, limiting insights. Single-cell omic technologies overcome the intrinsic limitations of bulk analysis and reveal the complexity of multicellular tissues at a cell-by-cell resolution. Within healthy and inflamed intestinal tissues, single-cell omics, particularly single-cell RNA sequencing, have contributed to uncovering novel cell types and cell functions linked to disease activity or the development of complications. Collectively, these results help identify therapeutic targets in difficult-to-treat complications such as fibrostenosis, creeping fat accumulation, perianal fistulae or inflammation of the pouch. More recently, single-cell omics have gradually been adopted in studies to understand therapeutic responses, identify mechanisms of drug failure and potentially develop predictors with clinical utility. Although these are early days, such studies lay the groundwork for the implementation in clinical practice of new technologies in diagnostics, monitoring and prediction of disease prognosis. With this review, we aim to provide a comprehensive survey of the studies that have applied single-cell omics to the study of UC or CD, and offer our perspective on the main findings these studies contribute. Finally, we discuss the limitations and potential benefits that the integration of single-cell omics into clinical practice and drug development could offer.</p>","PeriodicalId":12825,"journal":{"name":"Gut","volume":" ","pages":""},"PeriodicalIF":23.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/gutjnl-2024-334165","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammatory bowel diseases (IBDs), which include ulcerative colitis (UC) and Crohn's disease (CD), are chronic conditions characterised by inflammation of the intestinal tract. Alterations in virtually all intestinal cell types, including immune, epithelial and stromal cells, have been described in these diseases. The study of IBD has historically relied on bulk transcriptomics, but this method averages signals across diverse cell types, limiting insights. Single-cell omic technologies overcome the intrinsic limitations of bulk analysis and reveal the complexity of multicellular tissues at a cell-by-cell resolution. Within healthy and inflamed intestinal tissues, single-cell omics, particularly single-cell RNA sequencing, have contributed to uncovering novel cell types and cell functions linked to disease activity or the development of complications. Collectively, these results help identify therapeutic targets in difficult-to-treat complications such as fibrostenosis, creeping fat accumulation, perianal fistulae or inflammation of the pouch. More recently, single-cell omics have gradually been adopted in studies to understand therapeutic responses, identify mechanisms of drug failure and potentially develop predictors with clinical utility. Although these are early days, such studies lay the groundwork for the implementation in clinical practice of new technologies in diagnostics, monitoring and prediction of disease prognosis. With this review, we aim to provide a comprehensive survey of the studies that have applied single-cell omics to the study of UC or CD, and offer our perspective on the main findings these studies contribute. Finally, we discuss the limitations and potential benefits that the integration of single-cell omics into clinical practice and drug development could offer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gut
Gut 医学-胃肠肝病学
CiteScore
45.70
自引率
2.40%
发文量
284
审稿时长
1.5 months
期刊介绍: Gut is a renowned international journal specializing in gastroenterology and hepatology, known for its high-quality clinical research covering the alimentary tract, liver, biliary tree, and pancreas. It offers authoritative and current coverage across all aspects of gastroenterology and hepatology, featuring articles on emerging disease mechanisms and innovative diagnostic and therapeutic approaches authored by leading experts. As the flagship journal of BMJ's gastroenterology portfolio, Gut is accompanied by two companion journals: Frontline Gastroenterology, focusing on education and practice-oriented papers, and BMJ Open Gastroenterology for open access original research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信