Graph Convolutional Networks for multi-modal robotic martial arts leg pose recognition.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2025-01-20 eCollection Date: 2024-01-01 DOI:10.3389/fnbot.2024.1520983
Shun Yao, Yihan Ping, Xiaoyu Yue, He Chen
{"title":"Graph Convolutional Networks for multi-modal robotic martial arts leg pose recognition.","authors":"Shun Yao, Yihan Ping, Xiaoyu Yue, He Chen","doi":"10.3389/fnbot.2024.1520983","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Accurate recognition of martial arts leg poses is essential for applications in sports analytics, rehabilitation, and human-computer interaction. Traditional pose recognition models, relying on sequential or convolutional approaches, often struggle to capture the complex spatial-temporal dependencies inherent in martial arts movements. These methods lack the ability to effectively model the nuanced dynamics of joint interactions and temporal progression, leading to limited generalization in recognizing complex actions.</p><p><strong>Methods: </strong>To address these challenges, we propose PoseGCN, a Graph Convolutional Network (GCN)-based model that integrates spatial, temporal, and contextual features through a novel framework. PoseGCN leverages spatial-temporal graph encoding to capture joint motion dynamics, an action-specific attention mechanism to assign importance to relevant joints depending on the action context, and a self-supervised pretext task to enhance temporal robustness and continuity. Experimental results on four benchmark datasets-Kinetics-700, Human3.6M, NTU RGB+D, and UTD-MHAD-demonstrate that PoseGCN outperforms existing models, achieving state-of-the-art accuracy and F1 scores.</p><p><strong>Results and discussion: </strong>These findings highlight the model's capacity to generalize across diverse datasets and capture fine-grained pose details, showcasing its potential in advancing complex pose recognition tasks. The proposed framework offers a robust solution for precise action recognition and paves the way for future developments in multi-modal pose analysis.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1520983"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1520983","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Accurate recognition of martial arts leg poses is essential for applications in sports analytics, rehabilitation, and human-computer interaction. Traditional pose recognition models, relying on sequential or convolutional approaches, often struggle to capture the complex spatial-temporal dependencies inherent in martial arts movements. These methods lack the ability to effectively model the nuanced dynamics of joint interactions and temporal progression, leading to limited generalization in recognizing complex actions.

Methods: To address these challenges, we propose PoseGCN, a Graph Convolutional Network (GCN)-based model that integrates spatial, temporal, and contextual features through a novel framework. PoseGCN leverages spatial-temporal graph encoding to capture joint motion dynamics, an action-specific attention mechanism to assign importance to relevant joints depending on the action context, and a self-supervised pretext task to enhance temporal robustness and continuity. Experimental results on four benchmark datasets-Kinetics-700, Human3.6M, NTU RGB+D, and UTD-MHAD-demonstrate that PoseGCN outperforms existing models, achieving state-of-the-art accuracy and F1 scores.

Results and discussion: These findings highlight the model's capacity to generalize across diverse datasets and capture fine-grained pose details, showcasing its potential in advancing complex pose recognition tasks. The proposed framework offers a robust solution for precise action recognition and paves the way for future developments in multi-modal pose analysis.

简介准确识别武术腿部姿势对于体育分析、康复和人机交互等应用至关重要。传统的姿势识别模型依赖于序列或卷积方法,往往难以捕捉武术动作中固有的复杂时空依赖关系。这些方法无法有效模拟关节互动和时间进展的微妙动态,导致识别复杂动作的通用性有限:为了应对这些挑战,我们提出了基于图卷积网络(Graph Convolutional Network,GCN)的模型 PoseGCN,该模型通过一个新颖的框架整合了空间、时间和上下文特征。PoseGCN 利用时空图编码捕捉关节运动动态,利用特定动作关注机制根据动作上下文为相关关节分配重要性,并利用自监督借口任务增强时间鲁棒性和连续性。在四个基准数据集--Kinetics-700、Human3.6M、NTU RGB+D 和 UTD-MHAD 上的实验结果表明,PoseGCN 优于现有模型,达到了最先进的准确率和 F1 分数:这些发现凸显了该模型在不同数据集上的泛化能力和捕捉细粒度姿势细节的能力,展示了它在推进复杂姿势识别任务方面的潜力。所提出的框架为精确的动作识别提供了强大的解决方案,并为多模态姿势分析的未来发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信