{"title":"Age-stratified deep learning model for thyroid tumor classification: a multicenter diagnostic study.","authors":"Weijie Zou, Yahan Zhou, Jincao Yao, Bojian Feng, Danlei Xiong, Chen Chen, Yuqi Yan, Yuanzhen Liu, Lingyan Zhou, Liping Wang, Liyu Chen, Ping Liang, Dong Xu","doi":"10.1007/s00330-025-11386-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Thyroid cancer, the only cancer that uses age as a specific predictor of survival, is increasing in incidence, yet it has a low mortality rate, which can lead to overdiagnosis and overtreatment. We developed an age-stratified deep learning (DL) model (hereafter, ASMCNet) for classifying thyroid nodules and aimed to investigate the effect of age stratification on the accuracy of a DL model, exploring how ASMCNet can help radiologists improve diagnostic performance and avoid unnecessary biopsies.</p><p><strong>Methods: </strong>In this retrospective study, we used ultrasound images from three hospitals, a total of 10,391 images of 5934 patients were used for training, validation, and testing. The performance of ASMCNet was compared with that of model-trained non-age-stratified radiologists with different experience levels on the test data set with the DeLong method.</p><p><strong>Results: </strong>The area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity of ASMCNet were 0.906, 86.1%, and 85.1%, respectively, which exceeded those of model-trained non-age-stratified (0.867, 83.2%, and 75.5%, respectively; p < 0.001) and higher than all of the radiologists (p < 0.001). Reader studies show that radiologists' performances are improved when assisted by the explaining heatmaps (p < 0.001).</p><p><strong>Conclusions: </strong>Our study demonstrates that age stratification based on DL can further improve the performance of thyroid tumor classification models, which also suggests that age is an important factor in the diagnosis of thyroid tumors. The ASMCNet model shows promising clinical applicability and can assist radiologists in improving diagnostic accuracy.</p><p><strong>Key points: </strong>Question Age is crucial for differentiated thyroid carcinoma (DTC) prognosis, yet its diagnostic impact lacks research. Findings Adding age stratification to DL models can further improve the accuracy of thyroid nodule diagnosis. Clinical relevance Age-stratified multimodal classification network is a reliable tool used to help radiologists diagnose thyroid nodules, and integrating it into clinical practice can improve diagnostic accuracy and reduce unnecessary biopsies or treatments.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11386-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Thyroid cancer, the only cancer that uses age as a specific predictor of survival, is increasing in incidence, yet it has a low mortality rate, which can lead to overdiagnosis and overtreatment. We developed an age-stratified deep learning (DL) model (hereafter, ASMCNet) for classifying thyroid nodules and aimed to investigate the effect of age stratification on the accuracy of a DL model, exploring how ASMCNet can help radiologists improve diagnostic performance and avoid unnecessary biopsies.
Methods: In this retrospective study, we used ultrasound images from three hospitals, a total of 10,391 images of 5934 patients were used for training, validation, and testing. The performance of ASMCNet was compared with that of model-trained non-age-stratified radiologists with different experience levels on the test data set with the DeLong method.
Results: The area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity of ASMCNet were 0.906, 86.1%, and 85.1%, respectively, which exceeded those of model-trained non-age-stratified (0.867, 83.2%, and 75.5%, respectively; p < 0.001) and higher than all of the radiologists (p < 0.001). Reader studies show that radiologists' performances are improved when assisted by the explaining heatmaps (p < 0.001).
Conclusions: Our study demonstrates that age stratification based on DL can further improve the performance of thyroid tumor classification models, which also suggests that age is an important factor in the diagnosis of thyroid tumors. The ASMCNet model shows promising clinical applicability and can assist radiologists in improving diagnostic accuracy.
Key points: Question Age is crucial for differentiated thyroid carcinoma (DTC) prognosis, yet its diagnostic impact lacks research. Findings Adding age stratification to DL models can further improve the accuracy of thyroid nodule diagnosis. Clinical relevance Age-stratified multimodal classification network is a reliable tool used to help radiologists diagnose thyroid nodules, and integrating it into clinical practice can improve diagnostic accuracy and reduce unnecessary biopsies or treatments.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.