Ramzi Amin, Rachmat Hidayat, Ziske Maritska, Trisa Wulanda Putri
{"title":"Activated Growth Factor From Platelets as Treatment for Diabetic Retinopathy Through Antioxidant-Oxidative Stress Pathway.","authors":"Ramzi Amin, Rachmat Hidayat, Ziske Maritska, Trisa Wulanda Putri","doi":"10.2147/DMSO.S490055","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Reactive oxygen species (ROS) is known to play a significant role in the activation of chronic inflammatory processes in diabetic retinopathy. This study was aimed to evaluate activated growth factor (AGF) from platelet for diabetic retinopathy treatment, utilizing an in vivo investigation to regulate the antioxidant-oxidative stress pathway.</p><p><strong>Methods: </strong>The activated growth factor was initially derived by extracting intravenous blood from the rats. Advanced glycation end products (AGEs), p38 mitogen activated protein kinase (p38 MAPK), nuclear factor-κβ (NF-κβ), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), superoxide dismutase (SOD) and vascular endothelial growth factor (VEGF) was assessed using enzyme linked immunoassay (ELISA). In vivo, diabetic retinopathy rat models were induced by streptozotocin injection and were evaluated by retinal funduscopy.</p><p><strong>Results: </strong>The mean diameter of the retinal artery was significantly reduced when activated growth factor with transforming growth factor-β concentration of 10 ng/mL or 100 ng/mL was administered (p<0.05). The retinal tissue of diabetic rats showed a decline in antioxidant activity due to oxidative stress. AGF containing TGF-β (10 ng/mL and 100 ng/mL) significantly increased SOD activity (p<0.05). AGF administration effectively decreased proinflammatory cytokines like TNF-α and IL-1β.</p><p><strong>Conclusion: </strong>The study shows that AGF, with TGF-β concentrations of 10 ng/mL and 100 ng/mL, can reduce AGEs, p38MAPK, Nf-κβ, ROS, TNF-α, IL-1β, VCAM-1, ICAM-1, and VEGF in diabetic retinopathy rats' retinal tissue, while increasing antioxidant SOD concentration, suggesting AGF may help treat diabetic retinopathy by reducing inflammation and oxidative stress.</p>","PeriodicalId":11116,"journal":{"name":"Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy","volume":"18 ","pages":"305-313"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DMSO.S490055","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Reactive oxygen species (ROS) is known to play a significant role in the activation of chronic inflammatory processes in diabetic retinopathy. This study was aimed to evaluate activated growth factor (AGF) from platelet for diabetic retinopathy treatment, utilizing an in vivo investigation to regulate the antioxidant-oxidative stress pathway.
Methods: The activated growth factor was initially derived by extracting intravenous blood from the rats. Advanced glycation end products (AGEs), p38 mitogen activated protein kinase (p38 MAPK), nuclear factor-κβ (NF-κβ), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), superoxide dismutase (SOD) and vascular endothelial growth factor (VEGF) was assessed using enzyme linked immunoassay (ELISA). In vivo, diabetic retinopathy rat models were induced by streptozotocin injection and were evaluated by retinal funduscopy.
Results: The mean diameter of the retinal artery was significantly reduced when activated growth factor with transforming growth factor-β concentration of 10 ng/mL or 100 ng/mL was administered (p<0.05). The retinal tissue of diabetic rats showed a decline in antioxidant activity due to oxidative stress. AGF containing TGF-β (10 ng/mL and 100 ng/mL) significantly increased SOD activity (p<0.05). AGF administration effectively decreased proinflammatory cytokines like TNF-α and IL-1β.
Conclusion: The study shows that AGF, with TGF-β concentrations of 10 ng/mL and 100 ng/mL, can reduce AGEs, p38MAPK, Nf-κβ, ROS, TNF-α, IL-1β, VCAM-1, ICAM-1, and VEGF in diabetic retinopathy rats' retinal tissue, while increasing antioxidant SOD concentration, suggesting AGF may help treat diabetic retinopathy by reducing inflammation and oxidative stress.
期刊介绍:
An international, peer-reviewed, open access, online journal. The journal is committed to the rapid publication of the latest laboratory and clinical findings in the fields of diabetes, metabolic syndrome and obesity research. Original research, review, case reports, hypothesis formation, expert opinion and commentaries are all considered for publication.