Dietary L-carnitine supplementation recovers the hepatic damage induced by high-fat diet in Nile tilapia (Oreochromis niloticus L.) via activation of Nrf2/Keap pathway and inhibition of pro-inflammatory cytokine.

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Doaa H Assar, Abdallah S Salah, Aya G Rashwan, Ibrahim I Al-Hawary, Basma M Hendam, Ahmed Elsheshtawy, Amer Al Ali, Humood Al Shmrany, Zizy I Elbialy
{"title":"Dietary L-carnitine supplementation recovers the hepatic damage induced by high-fat diet in Nile tilapia (Oreochromis niloticus L.) via activation of Nrf2/Keap pathway and inhibition of pro-inflammatory cytokine.","authors":"Doaa H Assar, Abdallah S Salah, Aya G Rashwan, Ibrahim I Al-Hawary, Basma M Hendam, Ahmed Elsheshtawy, Amer Al Ali, Humood Al Shmrany, Zizy I Elbialy","doi":"10.1007/s10695-024-01430-6","DOIUrl":null,"url":null,"abstract":"<p><p>A feeding trial for 8 weeks was performed to explore whether nutritional supplementation of L-carnitine may minimize the adverse effects of high-fat diet (HFD) on tilapia growth performance, antioxidant, immune parameters, inflammatory response, histopathology of liver, kidney, and intestine, as well as hepatic lipid metabolism aiming to reveal the mechanism and providing a shred of molecular evidence in Nile tilapia (Oreochromis niloticous). Six groups of the Nile tilapia (17.13 <math><mo>±</mo></math> 0.49 g) in triplicate were fed for 60 days. Six experimental diets were formulated, incorporating different concentrations of L-carnitine. The first three groups were administered a diet comprising 6% fat, with L-carnitine concentrations of 0, 0.5, and 1 g/kg diet was designated as F6Car0, F6Car0.5, and F6Car1, respectively. Moreover, the fourth, fifth, and sixth groups were fed on a diet containing 12% fat, with L-carnitine concentrations of 0, 0.5, and 1 g/kg diet, respectively termed F12Car0, F12Car0.5, and F12Car1. The main results were as follows: compared to the control group HFD caused a significant reduction in BWG and PER (P > 0.05), but significantly increased the feed conversion rate (FCR), hepatosomatic index (HSI), intraperitoneal fat (IPF), as well as increased visceral fat deposits and liver fat accumulation with higher activities of serum aminotransferases, glucose, triglycerides, and cholesterol. HFD exacerbates hepatic lipid accumulation by enhancing lipogenic gene expression. HFD-fed fish exhibited the lowest crude protein and highest crude fat levels. This study demonstrates that dietary supplementation with L-carnitine significantly boosts growth, improves hemato-biochemical parameters, decreases lipogenesis, elevates lipolysis pathway genes, and lowers lipid levels, thereby rebalancing lipid metabolism and lessening hepatic steatosis. It also mitigates inflammation by downregulating pro-inflammatory genes, upregulating immune genes, and positively affecting Nile tilapia's histopathology.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"40"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-024-01430-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A feeding trial for 8 weeks was performed to explore whether nutritional supplementation of L-carnitine may minimize the adverse effects of high-fat diet (HFD) on tilapia growth performance, antioxidant, immune parameters, inflammatory response, histopathology of liver, kidney, and intestine, as well as hepatic lipid metabolism aiming to reveal the mechanism and providing a shred of molecular evidence in Nile tilapia (Oreochromis niloticous). Six groups of the Nile tilapia (17.13 ± 0.49 g) in triplicate were fed for 60 days. Six experimental diets were formulated, incorporating different concentrations of L-carnitine. The first three groups were administered a diet comprising 6% fat, with L-carnitine concentrations of 0, 0.5, and 1 g/kg diet was designated as F6Car0, F6Car0.5, and F6Car1, respectively. Moreover, the fourth, fifth, and sixth groups were fed on a diet containing 12% fat, with L-carnitine concentrations of 0, 0.5, and 1 g/kg diet, respectively termed F12Car0, F12Car0.5, and F12Car1. The main results were as follows: compared to the control group HFD caused a significant reduction in BWG and PER (P > 0.05), but significantly increased the feed conversion rate (FCR), hepatosomatic index (HSI), intraperitoneal fat (IPF), as well as increased visceral fat deposits and liver fat accumulation with higher activities of serum aminotransferases, glucose, triglycerides, and cholesterol. HFD exacerbates hepatic lipid accumulation by enhancing lipogenic gene expression. HFD-fed fish exhibited the lowest crude protein and highest crude fat levels. This study demonstrates that dietary supplementation with L-carnitine significantly boosts growth, improves hemato-biochemical parameters, decreases lipogenesis, elevates lipolysis pathway genes, and lowers lipid levels, thereby rebalancing lipid metabolism and lessening hepatic steatosis. It also mitigates inflammation by downregulating pro-inflammatory genes, upregulating immune genes, and positively affecting Nile tilapia's histopathology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信