Prediction of hemolytic peptides and their hemolytic concentration.

IF 5.2 1区 生物学 Q1 BIOLOGY
Anand Singh Rathore, Nishant Kumar, Shubham Choudhury, Naman Kumar Mehta, Gajendra P S Raghava
{"title":"Prediction of hemolytic peptides and their hemolytic concentration.","authors":"Anand Singh Rathore, Nishant Kumar, Shubham Choudhury, Naman Kumar Mehta, Gajendra P S Raghava","doi":"10.1038/s42003-025-07615-w","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide-based drugs often fail in clinical trials due to their toxicity or hemolytic activity against red blood cells (RBCs). Existing methods predict hemolytic peptides but not the concentration (HC<sub>50</sub>) required to lyse 50% of RBCs. This study develops classification and regression models to identify and quantify hemolytic activity. These models train on 1926 peptides with experimentally determined HC<sub>50</sub> against mammalian RBCs. Analysis indicates that hydrophobic and positively charged residues were associated with higher hemolytic activity. Among classification models, including machine learning (ML), quantum ML, and protein language models, a hybrid model combining random forest (RF) and a motif-based approach achieves the highest area under the receiver operating characteristic curve (AUROC) of 0.921. Regression models achieve a Pearson correlation coefficient (R) of 0.739 and a coefficient of determination (R²) of 0.543. These models outperform existing methods and are implemented in HemoPI2, a web-based platform and standalone software for designing peptides with desired HC<sub>50</sub> values ( http://webs.iiitd.edu.in/raghava/hemopi2/ ).</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"176"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07615-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide-based drugs often fail in clinical trials due to their toxicity or hemolytic activity against red blood cells (RBCs). Existing methods predict hemolytic peptides but not the concentration (HC50) required to lyse 50% of RBCs. This study develops classification and regression models to identify and quantify hemolytic activity. These models train on 1926 peptides with experimentally determined HC50 against mammalian RBCs. Analysis indicates that hydrophobic and positively charged residues were associated with higher hemolytic activity. Among classification models, including machine learning (ML), quantum ML, and protein language models, a hybrid model combining random forest (RF) and a motif-based approach achieves the highest area under the receiver operating characteristic curve (AUROC) of 0.921. Regression models achieve a Pearson correlation coefficient (R) of 0.739 and a coefficient of determination (R²) of 0.543. These models outperform existing methods and are implemented in HemoPI2, a web-based platform and standalone software for designing peptides with desired HC50 values ( http://webs.iiitd.edu.in/raghava/hemopi2/ ).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信