Micromechanical behavior of the apple fruit cuticle investigated by Brillouin light scattering microscopy.

IF 5.2 1区 生物学 Q1 BIOLOGY
Timm Landes, Bishnu P Khanal, Hans Lukas Bethge, Tina Lehrich, Maximilian Seydi Kilic, Franz Renz, Miroslav Zabic, Moritz Knoche, Dag Heinemann
{"title":"Micromechanical behavior of the apple fruit cuticle investigated by Brillouin light scattering microscopy.","authors":"Timm Landes, Bishnu P Khanal, Hans Lukas Bethge, Tina Lehrich, Maximilian Seydi Kilic, Franz Renz, Miroslav Zabic, Moritz Knoche, Dag Heinemann","doi":"10.1038/s42003-025-07555-5","DOIUrl":null,"url":null,"abstract":"<p><p>The cuticle is a polymeric membrane covering all plant aerial organs of primary origin. It regulates water loss and defends against environmental stressors and pathogens. Despite its significance, understanding of the micro-mechanical properties of the cuticle (cuticular membrane; CM) remains limited. In this study, non-invasive Brillouin light scattering (BLS) spectroscopy was applied to probe the micro-mechanics of native CM, dewaxed CM (DCM), and isolated cutin matrix (CU) of mature apple fruit. The BLS signal arises from the photon interaction with thermally induced pressure waves and allows for imaging with mechanical contrast. The derived loss tangent showed significant differences with wax extraction from the CM and further with carbohydrate extraction from the DCM, consistent with tensile test results. Spatial heterogeneity between anticlinal and periclinal regions was observed by BLS microscopy of CM and DCM, but not in CU. The key conclusions are: (1) BLS is sensitive to micro-mechanical variations, particularly the strain-stiffening effect of the cutin framework, offering insights into the CM's micro-mechanical behavior and underlying chemical structures; (2) CM and DCM exhibit spatial micro-mechanical heterogeneity between periclinal and anticlinal regions.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"174"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07555-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cuticle is a polymeric membrane covering all plant aerial organs of primary origin. It regulates water loss and defends against environmental stressors and pathogens. Despite its significance, understanding of the micro-mechanical properties of the cuticle (cuticular membrane; CM) remains limited. In this study, non-invasive Brillouin light scattering (BLS) spectroscopy was applied to probe the micro-mechanics of native CM, dewaxed CM (DCM), and isolated cutin matrix (CU) of mature apple fruit. The BLS signal arises from the photon interaction with thermally induced pressure waves and allows for imaging with mechanical contrast. The derived loss tangent showed significant differences with wax extraction from the CM and further with carbohydrate extraction from the DCM, consistent with tensile test results. Spatial heterogeneity between anticlinal and periclinal regions was observed by BLS microscopy of CM and DCM, but not in CU. The key conclusions are: (1) BLS is sensitive to micro-mechanical variations, particularly the strain-stiffening effect of the cutin framework, offering insights into the CM's micro-mechanical behavior and underlying chemical structures; (2) CM and DCM exhibit spatial micro-mechanical heterogeneity between periclinal and anticlinal regions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信