FIB-4plus Score: A novel machine learning-based tool for screening high-risk varices in compensated cirrhosis (CHESS2004): An international multicenter study.

IF 14 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Bingtian Dong, Ruiling He, Shenghong Ju, Yuping Chen, Ivica Grgurevic, Jianzhong Ma, Ying Guo, Huizhen Fan, Qiang Yan, Chuan Liu, Huixiong Xu, Anita Madir, Kristian Podrug, Jia Wang, Linxue Qian, Zhengzi Geng, Shanghao Liu, Tao Ren, Guo Zhang, Kun Wang, Meiqin Su, Fei Chen, Sumei Ma, Liting Zhang, Zhaowei Tong, Yonghe Zhou, Xin Li, Fanbin He, Hui Huan, Wenjuan Wang, Yunxiao Liang, Juan Tang, Fang Ai, Tingyu Wang, Liyun Zheng, Zhongwei Zhao, Jiansong Ji, Wei Liu, Jiaojiao Xu, Bo Liu, Xuemei Wang, Yao Zhang, Qiong Yan, Hui Liu, Xiaomei Chen, Shuhua Zhang, Yihua Wang, Yang Liu, Li Yin, Yanni Liu, Yanqing Huang, Li Bian, Ping An, Xin Zhang, Shaoting Zhang, Jinhua Shao, Xiangman Zhang, Wei Rao, Chaoxue Zhang, Dietrich Christoph Frank, Won Kim, Xiaolong Qi
{"title":"FIB-4plus Score: A novel machine learning-based tool for screening high-risk varices in compensated cirrhosis (CHESS2004): An international multicenter study.","authors":"Bingtian Dong, Ruiling He, Shenghong Ju, Yuping Chen, Ivica Grgurevic, Jianzhong Ma, Ying Guo, Huizhen Fan, Qiang Yan, Chuan Liu, Huixiong Xu, Anita Madir, Kristian Podrug, Jia Wang, Linxue Qian, Zhengzi Geng, Shanghao Liu, Tao Ren, Guo Zhang, Kun Wang, Meiqin Su, Fei Chen, Sumei Ma, Liting Zhang, Zhaowei Tong, Yonghe Zhou, Xin Li, Fanbin He, Hui Huan, Wenjuan Wang, Yunxiao Liang, Juan Tang, Fang Ai, Tingyu Wang, Liyun Zheng, Zhongwei Zhao, Jiansong Ji, Wei Liu, Jiaojiao Xu, Bo Liu, Xuemei Wang, Yao Zhang, Qiong Yan, Hui Liu, Xiaomei Chen, Shuhua Zhang, Yihua Wang, Yang Liu, Li Yin, Yanni Liu, Yanqing Huang, Li Bian, Ping An, Xin Zhang, Shaoting Zhang, Jinhua Shao, Xiangman Zhang, Wei Rao, Chaoxue Zhang, Dietrich Christoph Frank, Won Kim, Xiaolong Qi","doi":"10.3350/cmh.2024.0898","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>A large percentage of patients undergoing esophagogastroduodenoscopy (EGD) screening do not have esophageal varices (EV) or have only small EV. We evaluated a large, international, multicenter cohort to develop a novel score, termed FIB-4plus, by combining the fibrosis-4 (FIB-4) score, liver stiffness measurement (LSM), and spleen stiffness measurement (SSM) to identify high-risk EV (HRV) in compensated cirrhosis.</p><p><strong>Methods: </strong>This international cohort study involved patients with compensated cirrhosis from 17 Chinese hospitals and one Croatian institution (NCT04546360). Two-dimensional shear wave elastography-derived LSM and SSM values, and components of the FIB-4 score (i.e., age, aspartate aminotransferase, alanine aminotransferase, and platelet count [PLT]) were combined using machine learning algorithms (logistic regression [LR] and extreme gradient boosting [XGBoost]) to develop the LR-FIB-4plus and XGBoost-FIB-4plus models, respectively. Shapley Additive exPlanations method was used to interpret the model predictions.</p><p><strong>Results: </strong>We analyzed data from 502 patients with compensated cirrhosis who underwent EGD screening. The XGBoost-FIB-4plus score demonstrated superior predictive performance for HRV, with an area under the receiver operating characteristic curve (AUROC) of 0.927 (95% CI: 0.897-0.957) in the training cohort (n=268), and 0.919 (95% CI: 0.843-0.995) and 0.902 (95% CI: 0.820-0.984) in the first (n=118) and second (n=82) external validation cohorts, respectively. Additionally, the XGBoost-FIB-4plus score exhibited high AUROC values for predicting EV across all cohorts. The FIB-4plus score outperformed the individual parameters (LSM, SSM, PLT, and FIB-4).</p><p><strong>Conclusions: </strong>The FIB-4plus score effectively predicted EV and HRV in patients with compensated cirrhosis, providing clinicians with a valuable tool for optimizing patient management and outcomes.</p>","PeriodicalId":10275,"journal":{"name":"Clinical and Molecular Hepatology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Molecular Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3350/cmh.2024.0898","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aims: A large percentage of patients undergoing esophagogastroduodenoscopy (EGD) screening do not have esophageal varices (EV) or have only small EV. We evaluated a large, international, multicenter cohort to develop a novel score, termed FIB-4plus, by combining the fibrosis-4 (FIB-4) score, liver stiffness measurement (LSM), and spleen stiffness measurement (SSM) to identify high-risk EV (HRV) in compensated cirrhosis.

Methods: This international cohort study involved patients with compensated cirrhosis from 17 Chinese hospitals and one Croatian institution (NCT04546360). Two-dimensional shear wave elastography-derived LSM and SSM values, and components of the FIB-4 score (i.e., age, aspartate aminotransferase, alanine aminotransferase, and platelet count [PLT]) were combined using machine learning algorithms (logistic regression [LR] and extreme gradient boosting [XGBoost]) to develop the LR-FIB-4plus and XGBoost-FIB-4plus models, respectively. Shapley Additive exPlanations method was used to interpret the model predictions.

Results: We analyzed data from 502 patients with compensated cirrhosis who underwent EGD screening. The XGBoost-FIB-4plus score demonstrated superior predictive performance for HRV, with an area under the receiver operating characteristic curve (AUROC) of 0.927 (95% CI: 0.897-0.957) in the training cohort (n=268), and 0.919 (95% CI: 0.843-0.995) and 0.902 (95% CI: 0.820-0.984) in the first (n=118) and second (n=82) external validation cohorts, respectively. Additionally, the XGBoost-FIB-4plus score exhibited high AUROC values for predicting EV across all cohorts. The FIB-4plus score outperformed the individual parameters (LSM, SSM, PLT, and FIB-4).

Conclusions: The FIB-4plus score effectively predicted EV and HRV in patients with compensated cirrhosis, providing clinicians with a valuable tool for optimizing patient management and outcomes.

背景/目的:在接受食管胃十二指肠镜(EGD)检查的患者中,有很大一部分没有食管静脉曲张(EV)或只有小的EV。我们对一个大型国际多中心队列进行了评估,通过结合纤维化-4(FIB-4)评分、肝脏硬度测量(LSM)和脾脏硬度测量(SSM),开发出一种新的评分方法,称为FIB-4plus,用于识别代偿期肝硬化的高危EV(HRV):这项国际队列研究涉及 17 家中国医院和一家克罗地亚机构(NCT04546360)的代偿期肝硬化患者。利用机器学习算法(逻辑回归[LR]和极梯度提升[XGBoost])将二维剪切波弹性成像得出的LSM和SSM值与FIB-4评分的组成部分(即年龄、天冬氨酸氨基转移酶、丙氨酸氨基转移酶和血小板计数[PLT])结合起来,分别建立了LR-FIB-4plus和XGBoost-FIB-4plus模型。结果:我们分析了 502 名接受 EGD 筛查的代偿期肝硬化患者的数据。XGBoost-FIB-4plus评分对心率变异具有卓越的预测性能,在训练队列(n=268)中的接收器操作特征曲线下面积(AUROC)为0.927(95% CI:0.897-0.957),在第一批(n=118)和第二批(n=82)外部验证队列中的接收器操作特征曲线下面积(AUROC)分别为0.919(95% CI:0.843-0.995)和0.902(95% CI:0.820-0.984)。此外,XGBoost-FIB-4plus评分在所有队列中预测EV的AUROC值都很高。FIB-4plus得分优于单个参数(LSM、SSM、PLT和FIB-4):结论:FIB-4plus评分能有效预测代偿期肝硬化患者的EV和心率变异,为临床医生优化患者管理和预后提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical and Molecular Hepatology
Clinical and Molecular Hepatology Medicine-Hepatology
CiteScore
15.60
自引率
9.00%
发文量
89
审稿时长
10 weeks
期刊介绍: Clinical and Molecular Hepatology is an internationally recognized, peer-reviewed, open-access journal published quarterly in English. Its mission is to disseminate cutting-edge knowledge, trends, and insights into hepatobiliary diseases, fostering an inclusive academic platform for robust debate and discussion among clinical practitioners, translational researchers, and basic scientists. With a multidisciplinary approach, the journal strives to enhance public health, particularly in the resource-limited Asia-Pacific region, which faces significant challenges such as high prevalence of B viral infection and hepatocellular carcinoma. Furthermore, Clinical and Molecular Hepatology prioritizes epidemiological studies of hepatobiliary diseases across diverse regions including East Asia, North Asia, Southeast Asia, Central Asia, South Asia, Southwest Asia, Pacific, Africa, Central Europe, Eastern Europe, Central America, and South America. The journal publishes a wide range of content, including original research papers, meta-analyses, letters to the editor, case reports, reviews, guidelines, editorials, and liver images and pathology, encompassing all facets of hepatology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信