Differentiating Contact with Symptomatic and Asymptomatic Infectious Individuals in a SEIR Epidemic Model.

IF 2 4区 数学 Q2 BIOLOGY
Victoria Chebotaeva, Anish Srinivasan, Paula A Vasquez
{"title":"Differentiating Contact with Symptomatic and Asymptomatic Infectious Individuals in a SEIR Epidemic Model.","authors":"Victoria Chebotaeva, Anish Srinivasan, Paula A Vasquez","doi":"10.1007/s11538-025-01416-2","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript introduces a new Erlang-distributed SEIR model. The model incorporates asymptomatic spread through a subdivided exposed class, distinguishing between asymptomatic ( <math><msub><mtext>E</mtext> <mi>a</mi></msub> </math> ) and symptomatic ( <math><msub><mtext>E</mtext> <mi>s</mi></msub> </math> ) cases. The model identifies two key parameters: relative infectiousness, <math><msub><mi>β</mi> <mrow><mi>SA</mi></mrow> </msub> </math> , and the percentage of people who become asymptomatic after being infected by a symptomatic individual, <math><mi>κ</mi></math> . Lower values of these parameters reduce the peak magnitude and duration of the infectious period, highlighting the importance of isolation measures. Additionally, the model underscores the need for strategies addressing both symptomatic and asymptomatic transmissions.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 3","pages":"38"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01416-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript introduces a new Erlang-distributed SEIR model. The model incorporates asymptomatic spread through a subdivided exposed class, distinguishing between asymptomatic ( E a ) and symptomatic ( E s ) cases. The model identifies two key parameters: relative infectiousness, β SA , and the percentage of people who become asymptomatic after being infected by a symptomatic individual, κ . Lower values of these parameters reduce the peak magnitude and duration of the infectious period, highlighting the importance of isolation measures. Additionally, the model underscores the need for strategies addressing both symptomatic and asymptomatic transmissions.

SEIR流行病模型中区分有症状和无症状感染个体的接触
本文介绍了一种新的erlang -分布式SEIR模型。该模型通过细分的暴露类别纳入无症状传播,区分无症状(E a)和有症状(E s)病例。该模型确定了两个关键参数:相对传染性,β SA,以及被有症状的个体感染后无症状的人的百分比,κ。这些参数值越低,峰值大小和感染期持续时间就越短,突出了隔离措施的重要性。此外,该模型强调需要制定应对有症状和无症状传播的战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信