Biological and Molecular Efficiency of Paracentrotus lividus Shell in vitro Study: Antioxidant and Angiogenesis Effects Against T47D Breast Cancer Cell Line Via Nrf2/HMOX-1/ and HIF-1α /VEGF Signaling Pathways.
Abeer A Khamis, Mai M Elkeiy, Mona M El-Gamal, Khalil M Saad-Allah, Maha M Salem
{"title":"Biological and Molecular Efficiency of Paracentrotus lividus Shell in vitro Study: Antioxidant and Angiogenesis Effects Against T47D Breast Cancer Cell Line Via Nrf2/HMOX-1/ and HIF-1α /VEGF Signaling Pathways.","authors":"Abeer A Khamis, Mai M Elkeiy, Mona M El-Gamal, Khalil M Saad-Allah, Maha M Salem","doi":"10.1007/s12013-025-01678-6","DOIUrl":null,"url":null,"abstract":"<p><p>The sea urchin (Paracentrotus lividus) shell investigation reveals a wealth of bioactive compounds. The bioactive ingredients were observed using UPLCMS/MS profiling. The anti-diabetic, antioxidant, antimicrobial, and anti-inflammatory qualities of P. lividus shell extract were assessed concerning NO, MDA, CAT, and SOD levels. Also, cytotoxic, and anti-angiogenic impact on colon (Caco-2) and breast (T47D) carcinoma cells and quantificated of Nrf2/HMOX-1 and HIF-1α/VEGF pathway expression were evaluated. Our findings indicate that the extract possesses remarkable antioxidant activity with IC<sub>50</sub> equal to (0.1056 ± 0.083 and 30.42 ± 1.52 μg/mL; for DPPH and ABTS<sup>+</sup> respectively), antidiabetic with IC<sub>50</sub> (1.572 ± 0.13 μg/mL) and anti-inflammatory with IC<sub>50</sub> (2.090 ± 0.49 μg/mL). Notably, it exhibits potent anticancer effects against human breast (T47D) and colon (Caco-2) cancer cell lines, (30.55 ± 1.19 and 31.34 ± 1.22 µg/mL respectively). The extract induces oxidative stress and apoptosis, as evidenced by elevated NO and MDA levels, alongside reduced SOD and CAT activities. Moreover, the downregulation of Nrf2/HMOX-1 and HIF-1α/VEGF pathways expression suggests intricate molecular mechanisms underlying its anticancer properties, potentially involving the modulation of oxidative stress and angiogenesis. These findings underscore the sea urchin (P. lividus) shell as a potent reservoir of bioactive constituents with promising applications in pharmaceutical research and offering new avenues for drug discovery.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01678-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The sea urchin (Paracentrotus lividus) shell investigation reveals a wealth of bioactive compounds. The bioactive ingredients were observed using UPLCMS/MS profiling. The anti-diabetic, antioxidant, antimicrobial, and anti-inflammatory qualities of P. lividus shell extract were assessed concerning NO, MDA, CAT, and SOD levels. Also, cytotoxic, and anti-angiogenic impact on colon (Caco-2) and breast (T47D) carcinoma cells and quantificated of Nrf2/HMOX-1 and HIF-1α/VEGF pathway expression were evaluated. Our findings indicate that the extract possesses remarkable antioxidant activity with IC50 equal to (0.1056 ± 0.083 and 30.42 ± 1.52 μg/mL; for DPPH and ABTS+ respectively), antidiabetic with IC50 (1.572 ± 0.13 μg/mL) and anti-inflammatory with IC50 (2.090 ± 0.49 μg/mL). Notably, it exhibits potent anticancer effects against human breast (T47D) and colon (Caco-2) cancer cell lines, (30.55 ± 1.19 and 31.34 ± 1.22 µg/mL respectively). The extract induces oxidative stress and apoptosis, as evidenced by elevated NO and MDA levels, alongside reduced SOD and CAT activities. Moreover, the downregulation of Nrf2/HMOX-1 and HIF-1α/VEGF pathways expression suggests intricate molecular mechanisms underlying its anticancer properties, potentially involving the modulation of oxidative stress and angiogenesis. These findings underscore the sea urchin (P. lividus) shell as a potent reservoir of bioactive constituents with promising applications in pharmaceutical research and offering new avenues for drug discovery.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.