Valerio Tettamanti, N. Justin Marshall, Karen L. Cheney, Fabio Cortesi
{"title":"Damsels in Disguise: Development of Ultraviolet Sensitivity and Colour Patterns in Damselfishes (Pomacentridae)","authors":"Valerio Tettamanti, N. Justin Marshall, Karen L. Cheney, Fabio Cortesi","doi":"10.1111/mec.17680","DOIUrl":null,"url":null,"abstract":"<p>Damselfishes (Pomacentridae) are widespread and highly abundant on tropical coral reefs. They exhibit diverse body colouration within and between the ~250 species and across ontogenetic stages. In addition to human-visible colours (i.e., 400–700 nm), most adult damselfishes reflect ultraviolet (UV, 300–400 nm) colour patches. UV sensitivity and UV colour signals are essential for feeding and form the basis for a secret communication channel invisible to the many UV-blind predatory fish on the reef; however, how these traits develop across ontogenetic stages and their distribution across the damselfish family is poorly characterised. Here, we used UV photography, phylogenetic reconstructions of opsin genes, and differential gene expression analysis (DGE) of retinal samples to investigate the development of UV vision and colour patterns in three ontogenetic stages (pre-settlement larval, juvenile, and adult) of 11 damselfish species. Using DGE, we found similar gene expression between juveniles and adults, which strongly differed from larvae. All species and all stages expressed at least one UV-sensitive <i>sws1</i> opsin gene. However, UV body colour patterns only started to appear at the juvenile stage. Moreover, <i>Pomacentrus</i> species displayed highly complex UV body patterns that were correlated with the expression of two <i>sws1</i> copies. This could mean that some damselfishes can discriminate colours that change only in their UV component. We demonstrate dramatic shifts in both UV sensitivity and UV colouration across the development stages of damselfish while highlighting the importance of considering ontogeny when studying the coevolution of visual systems and colour signals.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 6","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17680","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17680","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Damselfishes (Pomacentridae) are widespread and highly abundant on tropical coral reefs. They exhibit diverse body colouration within and between the ~250 species and across ontogenetic stages. In addition to human-visible colours (i.e., 400–700 nm), most adult damselfishes reflect ultraviolet (UV, 300–400 nm) colour patches. UV sensitivity and UV colour signals are essential for feeding and form the basis for a secret communication channel invisible to the many UV-blind predatory fish on the reef; however, how these traits develop across ontogenetic stages and their distribution across the damselfish family is poorly characterised. Here, we used UV photography, phylogenetic reconstructions of opsin genes, and differential gene expression analysis (DGE) of retinal samples to investigate the development of UV vision and colour patterns in three ontogenetic stages (pre-settlement larval, juvenile, and adult) of 11 damselfish species. Using DGE, we found similar gene expression between juveniles and adults, which strongly differed from larvae. All species and all stages expressed at least one UV-sensitive sws1 opsin gene. However, UV body colour patterns only started to appear at the juvenile stage. Moreover, Pomacentrus species displayed highly complex UV body patterns that were correlated with the expression of two sws1 copies. This could mean that some damselfishes can discriminate colours that change only in their UV component. We demonstrate dramatic shifts in both UV sensitivity and UV colouration across the development stages of damselfish while highlighting the importance of considering ontogeny when studying the coevolution of visual systems and colour signals.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms