Selective Recovery of Critical Minerals from Simulated Electronic Wastes via Reaction-Diffusion Coupling.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-02-05 DOI:10.1002/cssc.202402372
Qingpu Wang, Yucheng Fu, Erin A Miller, Duo Song, Philip J Brahana, Andrew Ritchhart, Zhijie Xu, Grant E Johnson, Bhuvnesh Bharti, Maria L Sushko, Elias Nakouzi
{"title":"Selective Recovery of Critical Minerals from Simulated Electronic Wastes via Reaction-Diffusion Coupling.","authors":"Qingpu Wang, Yucheng Fu, Erin A Miller, Duo Song, Philip J Brahana, Andrew Ritchhart, Zhijie Xu, Grant E Johnson, Bhuvnesh Bharti, Maria L Sushko, Elias Nakouzi","doi":"10.1002/cssc.202402372","DOIUrl":null,"url":null,"abstract":"<p><p>Atom- and energy-efficient chemical separations are urgently needed to meet the surging demand for critical materials that has strained supply chains and threatened environmental damage. In this study, we used reaction-diffusion coupling to separate iron, neodymium, and dysprosium ions from model feedstocks of permanent magnets, which are typically found in electronic wastes. Feedstock solutions were placed in contact with a hydrogel loaded with potassium hydroxide and/or dibutyl phosphate, resulting in complex precipitation patterns as the various metal ions diffused into the reaction medium. Specifically, we observed the precipitation of up to 40 mM of iron from the feedstock, followed by the enrichment of 73% dysprosium, and the extraction of >95% neodymium product at a further distance from the solution-gel interface. We designed a series of experiments and simulations to determine the relevant ion diffusivities, DNd = 5.4×10-10 and DDy = 5.1×10-10 m2/s, and precipitation rates, kNd = 1.0×10-5 and kDy = = 5.0×10-3 m9mol-3s-1, which enabled a numerical model to be established for predicting the distribution of products in the reaction medium. Our proof-of-concept study validates reaction-diffusion coupling as an effective and versatile approach for critical materials separations, without relying on ligands, membranes, resins, or other specialty chemicals.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402372"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402372","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atom- and energy-efficient chemical separations are urgently needed to meet the surging demand for critical materials that has strained supply chains and threatened environmental damage. In this study, we used reaction-diffusion coupling to separate iron, neodymium, and dysprosium ions from model feedstocks of permanent magnets, which are typically found in electronic wastes. Feedstock solutions were placed in contact with a hydrogel loaded with potassium hydroxide and/or dibutyl phosphate, resulting in complex precipitation patterns as the various metal ions diffused into the reaction medium. Specifically, we observed the precipitation of up to 40 mM of iron from the feedstock, followed by the enrichment of 73% dysprosium, and the extraction of >95% neodymium product at a further distance from the solution-gel interface. We designed a series of experiments and simulations to determine the relevant ion diffusivities, DNd = 5.4×10-10 and DDy = 5.1×10-10 m2/s, and precipitation rates, kNd = 1.0×10-5 and kDy = = 5.0×10-3 m9mol-3s-1, which enabled a numerical model to be established for predicting the distribution of products in the reaction medium. Our proof-of-concept study validates reaction-diffusion coupling as an effective and versatile approach for critical materials separations, without relying on ligands, membranes, resins, or other specialty chemicals.

由于对关键材料的需求激增,供应链紧张,环境受到破坏,因此迫切需要原子和能源效率高的化学分离技术来满足这种需求。在这项研究中,我们利用反应-扩散耦合技术从永磁材料模型中分离出铁、钕和镝离子,这些材料通常存在于电子垃圾中。将原料溶液与含有氢氧化钾和/或磷酸二丁酯的水凝胶接触,当各种金属离子扩散到反应介质中时,会产生复杂的沉淀模式。具体来说,我们观察到原料中析出了高达 40 mM 的铁,随后富集了 73% 的镝,并在离溶液-凝胶界面较远的地方提取了 >95% 的钕。我们设计了一系列实验和模拟,以确定相关的离子扩散率 DNd = 5.4×10-10 和 DDy = 5.1×10-10 m2/s,以及析出率 kNd = 1.0×10-5 和 kDy = = 5.0×10-3 m9mol-3s-1,从而建立了预测反应介质中产物分布的数值模型。我们的概念验证研究验证了反应-扩散耦合是一种有效的、多功能的关键材料分离方法,无需依赖配体、膜、树脂或其他特殊化学品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信