Sensitivity improvement by Langmuir film formation on a spectroelectrochemical fiber-optic sensor surface.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Takamichi Yamamoto, Tatsuya Orii, Takuya Okazaki, Sarkawi Muhammad, Kazuto Sazawa, Kazuharu Sugawara, Hideki Kuramitz
{"title":"Sensitivity improvement by Langmuir film formation on a spectroelectrochemical fiber-optic sensor surface.","authors":"Takamichi Yamamoto, Tatsuya Orii, Takuya Okazaki, Sarkawi Muhammad, Kazuto Sazawa, Kazuharu Sugawara, Hideki Kuramitz","doi":"10.1039/d4ay01874e","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a method for enhancing spectroelectrochemical sensor sensitivity by incorporating optical fiber technology. The sensor comprises a gold mesh electrode coated on the surface of an exposed optical fiber core. Total reflection attenuation spectroscopy was employed to measure the optical properties of the fiber core surface. To enhance sensitivity, we investigated surfactant addition to the sample, anticipating the formation of an electrostatic film on the optical fiber core surface. Spectroscopic measurements were conducted on 24 dyes, including cationic methylene blue and anionic indigosulfonic acid, as target substances. Consequently, adding surfactant at approximately one-tenth of the critical micelle concentration slightly improved the measurement sensitivity for cationic dyes, with a 2.3-fold increase observed for methylene blue. Previously challenging anionic dyes were successfully detected using this method. In addition, this technique was successfully applied to sulfide ion determination using the absorbance spectrophotometric method with methylene blue. The findings indicated that this approach markedly enhances the sensitivity and adaptability of spectroelectrochemical sensors using fiber optic, particularly in the detection of a wide variety of chemical substances.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01874e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a method for enhancing spectroelectrochemical sensor sensitivity by incorporating optical fiber technology. The sensor comprises a gold mesh electrode coated on the surface of an exposed optical fiber core. Total reflection attenuation spectroscopy was employed to measure the optical properties of the fiber core surface. To enhance sensitivity, we investigated surfactant addition to the sample, anticipating the formation of an electrostatic film on the optical fiber core surface. Spectroscopic measurements were conducted on 24 dyes, including cationic methylene blue and anionic indigosulfonic acid, as target substances. Consequently, adding surfactant at approximately one-tenth of the critical micelle concentration slightly improved the measurement sensitivity for cationic dyes, with a 2.3-fold increase observed for methylene blue. Previously challenging anionic dyes were successfully detected using this method. In addition, this technique was successfully applied to sulfide ion determination using the absorbance spectrophotometric method with methylene blue. The findings indicated that this approach markedly enhances the sensitivity and adaptability of spectroelectrochemical sensors using fiber optic, particularly in the detection of a wide variety of chemical substances.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信