Near infrared-emitting carbon dots for the detection of glial fibrillary acidic protein (GFAP): a non-enzymatic approach for the early identification of stroke and glioblastoma†
Susan Varghese, Merin K. Abraham, Ali Ibrahim Shkhair, Geneva Indongo, Greeshma Rajeevan, Arathy B. K., Anju S. Madanan and Sony George
{"title":"Near infrared-emitting carbon dots for the detection of glial fibrillary acidic protein (GFAP): a non-enzymatic approach for the early identification of stroke and glioblastoma†","authors":"Susan Varghese, Merin K. Abraham, Ali Ibrahim Shkhair, Geneva Indongo, Greeshma Rajeevan, Arathy B. K., Anju S. Madanan and Sony George","doi":"10.1039/D4AY02013H","DOIUrl":null,"url":null,"abstract":"<p >Immunoassay techniques are widely recognized for their sensitivity and selectivity in biomarker detection; however, their high cost, time-consuming protocols and limited stability often pose significant limitations. In this study, we address these challenges by developing an antibody-free fluorescent platform for the detection of glial fibrillary acidic protein (GFAP), a biomarker released from astrocytes, which plays a critical role in neurological diseases such as ischemic stroke and glioblastoma (GBM). Glutamic acid (GA), a neurotransmitter prevalent in the brain, was selected to quench a near-infrared (NIR) emitting carbon dot-based probe, exploiting the potential interaction between GA and GFAP. The probe demonstrated a turn-on response towards GFAP in the presence of various co-existing biomolecules and ions with a detection limit of 1.8 pg mL<small><sup>−1</sup></small>. A real sample assay conducted in human serum further validated the performance of the probe, achieving a recovery rate of 85% to 97%, underscoring the potential of the probe as a reliable and cost-effective tool for GFAP detection in clinical settings.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" 8","pages":" 1850-1859"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d4ay02013h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoassay techniques are widely recognized for their sensitivity and selectivity in biomarker detection; however, their high cost, time-consuming protocols and limited stability often pose significant limitations. In this study, we address these challenges by developing an antibody-free fluorescent platform for the detection of glial fibrillary acidic protein (GFAP), a biomarker released from astrocytes, which plays a critical role in neurological diseases such as ischemic stroke and glioblastoma (GBM). Glutamic acid (GA), a neurotransmitter prevalent in the brain, was selected to quench a near-infrared (NIR) emitting carbon dot-based probe, exploiting the potential interaction between GA and GFAP. The probe demonstrated a turn-on response towards GFAP in the presence of various co-existing biomolecules and ions with a detection limit of 1.8 pg mL−1. A real sample assay conducted in human serum further validated the performance of the probe, achieving a recovery rate of 85% to 97%, underscoring the potential of the probe as a reliable and cost-effective tool for GFAP detection in clinical settings.