{"title":"PyViscount: Validating False Discovery Rate Estimation Methods via Random Search Space Partition.","authors":"Dominik Madej, Henry Lam","doi":"10.1021/acs.jproteome.4c00743","DOIUrl":null,"url":null,"abstract":"<p><p>Validating false discovery rate (FDR) estimation is an essential but surprisingly understudied aspect of method development in shotgun proteomics. Currently available validation protocols mostly rely on ground truth data sets, which typically involve manipulating the properties of the search space or query spectra used. As a result, comparing estimated FDR and ground truth-based false discovery proportion values may not be representative of the scenarios involving natural data sets encountered in practice. In this study, we introduce PyViscount─a Python tool implementing a novel validation protocol based on random search space partition, which enables generating a quasi ground-truth using unaltered search spaces of unique candidate peptides and generic data sets of experimental query spectra. Furthermore, validation of existing FDR estimation methods by PyViscount is consistent with alternative validation protocols. The presented novel approach to validation free from the need for synthetic data sets or dubious manipulation of the data may be an attractive alternative for proteomics practitioners, allowing them to obtain deeper insights into the performance of existing and new FDR estimation methods.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Validating false discovery rate (FDR) estimation is an essential but surprisingly understudied aspect of method development in shotgun proteomics. Currently available validation protocols mostly rely on ground truth data sets, which typically involve manipulating the properties of the search space or query spectra used. As a result, comparing estimated FDR and ground truth-based false discovery proportion values may not be representative of the scenarios involving natural data sets encountered in practice. In this study, we introduce PyViscount─a Python tool implementing a novel validation protocol based on random search space partition, which enables generating a quasi ground-truth using unaltered search spaces of unique candidate peptides and generic data sets of experimental query spectra. Furthermore, validation of existing FDR estimation methods by PyViscount is consistent with alternative validation protocols. The presented novel approach to validation free from the need for synthetic data sets or dubious manipulation of the data may be an attractive alternative for proteomics practitioners, allowing them to obtain deeper insights into the performance of existing and new FDR estimation methods.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".