Machine Learning Nonadiabatic Dynamics: Eliminating Phase Freedom of Nonadiabatic Couplings with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn-Sham Approach.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Sung Wook Moon, Soohaeng Yoo Willow, Tae Hyeon Park, Seung Kyu Min, Chang Woo Myung
{"title":"Machine Learning Nonadiabatic Dynamics: Eliminating Phase Freedom of Nonadiabatic Couplings with the State-Interaction State-Averaged Spin-Restricted Ensemble-Referenced Kohn-Sham Approach.","authors":"Sung Wook Moon, Soohaeng Yoo Willow, Tae Hyeon Park, Seung Kyu Min, Chang Woo Myung","doi":"10.1021/acs.jctc.4c01475","DOIUrl":null,"url":null,"abstract":"<p><p>Excited-state molecular dynamics (ESMD) simulations near conical intersections (CIs) pose significant challenges when using machine learning potentials (MLPs). Although MLPs have gained recognition for their integration into mixed quantum-classical (MQC) methods, such as trajectory surface hopping (TSH), and their capacity to model correlated electron-nuclear dynamics efficiently, difficulties persist in managing nonadiabatic dynamics. Specifically, singularities at CIs and double-valued coupling elements result in discontinuities that disrupt the smoothness of predictive functions. Partial solutions have been provided by learning diabatic Hamiltonians with phaseless loss functions to these challenges. However, a definitive method for addressing the discontinuities caused by CIs and double-valued coupling elements has yet to be developed. Here, we introduce the phaseless coupling term, Δ<sup>2</sup>, derived from the square of the off-diagonal elements of the diabatic Hamiltonian in the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS, briefly SSR)(2,2) formalism. This approach improves the stability and accuracy of the MLP model by addressing the issues arising from CI singularities and double-valued coupling functions. We apply this method to the penta-2,4-dieniminium cation (PSB3), demonstrating its effectiveness in improving MLP training for ML-based nonadiabatic dynamics. Our results show that the Δ<sup>2</sup>-based ML-ESMD method can reproduce ab initio ESMD simulations, underscoring its potential and efficiency for broader applications, particularly in large-scale and long-time scale ESMD simulations.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01475","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Excited-state molecular dynamics (ESMD) simulations near conical intersections (CIs) pose significant challenges when using machine learning potentials (MLPs). Although MLPs have gained recognition for their integration into mixed quantum-classical (MQC) methods, such as trajectory surface hopping (TSH), and their capacity to model correlated electron-nuclear dynamics efficiently, difficulties persist in managing nonadiabatic dynamics. Specifically, singularities at CIs and double-valued coupling elements result in discontinuities that disrupt the smoothness of predictive functions. Partial solutions have been provided by learning diabatic Hamiltonians with phaseless loss functions to these challenges. However, a definitive method for addressing the discontinuities caused by CIs and double-valued coupling elements has yet to be developed. Here, we introduce the phaseless coupling term, Δ2, derived from the square of the off-diagonal elements of the diabatic Hamiltonian in the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS, briefly SSR)(2,2) formalism. This approach improves the stability and accuracy of the MLP model by addressing the issues arising from CI singularities and double-valued coupling functions. We apply this method to the penta-2,4-dieniminium cation (PSB3), demonstrating its effectiveness in improving MLP training for ML-based nonadiabatic dynamics. Our results show that the Δ2-based ML-ESMD method can reproduce ab initio ESMD simulations, underscoring its potential and efficiency for broader applications, particularly in large-scale and long-time scale ESMD simulations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信