{"title":"Intramolecular Magnetic Exchange Interaction in Dichalcogenide Substituted Organic Diradical Dications.","authors":"Abhishek R Nath, Manish Kumar, Md Ehesan Ali","doi":"10.1021/acs.jctc.4c01505","DOIUrl":null,"url":null,"abstract":"<p><p>Organic diradical dications, due to reduced intermolecular interactions, exhibit a greater tendency to adopt high spin states in the solid phase compared to their neutral diradical counterparts. This characteristic makes them promising candidates for applications involving organic electronics. We present a theoretical study of a recently synthesized sulfur-based diradical dication, a unique system exhibiting a robust triplet ground state. Using a number of density functional theory (DFT)-based methods (e.g., standard broken-symmetry DFT, constrained DFT, spin-flip TDDFT) and wave function-based multireference CASSCF+NEVPT2 methods, we investigate its magnetic properties and explore the influence of chalcogen substitution on magnetic exchange coupling. An active space scanning method was adopted to overcome the difficulties in choosing the correct active space for multireference calculation. Our findings highlight the critical role of multireference methods in accurately capturing the magnetic behavior of highly π-conjugated systems. The study reveals a surprising variation in magnetic properties among sulfur, selenium, and tellurium-based diradical dications despite being elements of the same group. These results offer valuable insights into the design and tuning of magnetic properties in organic diradical dications.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01505","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organic diradical dications, due to reduced intermolecular interactions, exhibit a greater tendency to adopt high spin states in the solid phase compared to their neutral diradical counterparts. This characteristic makes them promising candidates for applications involving organic electronics. We present a theoretical study of a recently synthesized sulfur-based diradical dication, a unique system exhibiting a robust triplet ground state. Using a number of density functional theory (DFT)-based methods (e.g., standard broken-symmetry DFT, constrained DFT, spin-flip TDDFT) and wave function-based multireference CASSCF+NEVPT2 methods, we investigate its magnetic properties and explore the influence of chalcogen substitution on magnetic exchange coupling. An active space scanning method was adopted to overcome the difficulties in choosing the correct active space for multireference calculation. Our findings highlight the critical role of multireference methods in accurately capturing the magnetic behavior of highly π-conjugated systems. The study reveals a surprising variation in magnetic properties among sulfur, selenium, and tellurium-based diradical dications despite being elements of the same group. These results offer valuable insights into the design and tuning of magnetic properties in organic diradical dications.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.