Cellular mechanisms underlying overreaching in skeletal muscle following excessive high-intensity interval training.

IF 5 2区 生物学 Q2 CELL BIOLOGY
Daiki Watanabe, Masanobu Wada
{"title":"Cellular mechanisms underlying overreaching in skeletal muscle following excessive high-intensity interval training.","authors":"Daiki Watanabe, Masanobu Wada","doi":"10.1152/ajpcell.00623.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Overreaching (OR) can be defined as a decline in physical performance resulting from excessive exercise training, necessitating days to weeks recovery. Impairments in the contractile function of skeletal muscle are believed to be a primary factor contributing to OR. However, the cellular mechanism triggering OR remains unclear. The purpose of this study was to elu idate the mechanisms underlying OR. Rats' plantar flexor muscles were subjected to repeated electrical stimulations mimicking excessive high-intensity interval training (HIIT) daily for 13 consecutive days, and isometric torques were monitored. The torque was measured one day after HIIT, and subsequently, the physiological function of type II fibers was analyzed by using mechanically-skinned-fiber technique. Eleven out of 17 rats exhibited torque decline, while others did not. Thus, the rats were divided into OR and non-overreaching (NOR) groups. Skinned fibers from the gastrocnemius (GAS) muscles of both groups showed decreased depolarization-induced force and increased myofibrillar Ca<sup>2+</sup> sensitivity.However, the fibers from the OR group, but not the NOR group, exhibited a decrease in myofibrillar maximal force. Biochemical analyses of a superficial region of GAS muscle revealed that α-actinin 2 content was increased in the NOR group, but not the OR group, whereas calpain-3 autolysis was increased in the OR group, but not the NOR group. These findings shed light on the cellular mechanism underlying OR: OR following excessive HIIT was induced by a decreased myofibrillar maximal force, while Ca<sup>2+</sup> sensitivity was increased.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00623.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Overreaching (OR) can be defined as a decline in physical performance resulting from excessive exercise training, necessitating days to weeks recovery. Impairments in the contractile function of skeletal muscle are believed to be a primary factor contributing to OR. However, the cellular mechanism triggering OR remains unclear. The purpose of this study was to elu idate the mechanisms underlying OR. Rats' plantar flexor muscles were subjected to repeated electrical stimulations mimicking excessive high-intensity interval training (HIIT) daily for 13 consecutive days, and isometric torques were monitored. The torque was measured one day after HIIT, and subsequently, the physiological function of type II fibers was analyzed by using mechanically-skinned-fiber technique. Eleven out of 17 rats exhibited torque decline, while others did not. Thus, the rats were divided into OR and non-overreaching (NOR) groups. Skinned fibers from the gastrocnemius (GAS) muscles of both groups showed decreased depolarization-induced force and increased myofibrillar Ca2+ sensitivity.However, the fibers from the OR group, but not the NOR group, exhibited a decrease in myofibrillar maximal force. Biochemical analyses of a superficial region of GAS muscle revealed that α-actinin 2 content was increased in the NOR group, but not the OR group, whereas calpain-3 autolysis was increased in the OR group, but not the NOR group. These findings shed light on the cellular mechanism underlying OR: OR following excessive HIIT was induced by a decreased myofibrillar maximal force, while Ca2+ sensitivity was increased.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信