An endogenous aryl hydrocarbon receptor ligand dysregulates endothelial functions, transcriptome, and phosphoproteome.

IF 5 2区 生物学 Q2 CELL BIOLOGY
Ying-Jie Zhao, Si-Yan Zhang, Ying-Ying Wei, Hui-Hui Li, Wei Lei, Kai Wang, Sathish Kumar, Chi Zhou, Jing Zheng
{"title":"An endogenous aryl hydrocarbon receptor ligand dysregulates endothelial functions, transcriptome, and phosphoproteome.","authors":"Ying-Jie Zhao, Si-Yan Zhang, Ying-Ying Wei, Hui-Hui Li, Wei Lei, Kai Wang, Sathish Kumar, Chi Zhou, Jing Zheng","doi":"10.1152/ajpcell.00849.2024","DOIUrl":null,"url":null,"abstract":"<p><p>We have reported that an endogenous aryl hydrocarbon receptor (AhR) ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), inhibits functions of human umbilical vein endothelial cells (HUVECs) and induces preeclampsia (PE)-like symptoms in rats. Herein, we tested the hypothesis that ITE impairs endothelial functions via disturbing transcriptome and phosphoproteome in HUVECs. We measured AhR activity in human maternal and umbilical vein sera from PE and normotensive (NT) pregnancies. The serum-induced changes in CYP1A1/B1 mRNA (indexes of AhR activation) in HUVECs were quantified using quantitative reverse transcription polymerase chain reaction (RT-qPCR). ITE's effects on endothelial proliferation and monolayer integrity in female and male HUVECs were determined. We profiled ITE-induced changes in transcriptome and phosphoproteome in HUVECs using RNA-seq and bottom-up phosphoproteomics, respectively. After 12 h of treatment, umbilical vein sera from PE increased CYP1A1 mRNA (1.7-fold of NT) in HUVECs, which was blocked by CH223191, an AhR antagonist. ITE dose-dependently inhibited endothelial proliferation (76%-87% of control) and time-dependently reduced endothelial integrity with a maximum inhibition (∼10%) at 40 h. ITE induced 140 and 80 differentially expressed genes in female and male HUVECs, respectively. ITE altered phosphorylation of 92 and 105 proteins at 4 and 24 h, respectively, in HUVECs. These ITE-dysregulated genes and phosphoproteins were enriched in biological functions and pathways that are relevant to heart, liver, and kidney diseases, vascular functions, and inflammatory responses. Thus, endogenous AhR ligands may impair endothelial functions by disturbing transcriptome and phosphoproteome. These AhR ligand-dysregulated genes and phosphoproteins may be therapeutic and cell sex-specific targets for PE-induced endothelial dysfunction.<b>NEW & NOTEWORTHY</b> Preeclampsia elevates AhR agonistic activities in fetal circulation and alters immune cell gene signatures of human umbilical vein endothelial cells (HUVECs). An endogenous AhR ligand (ITE) decreases cell proliferation and monolayer integrity in HUVECs in vitro. ITE dysregulates transcriptome in HUVECs in a fetal sex-specific manner. ITE also disrupts phosphoproteome in HUVECs. These ITE-dysregulated genes and phosphoproteins are highly relevant to diseases of the heart, vascular function, and inflammatory responses.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C954-C966"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00849.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We have reported that an endogenous aryl hydrocarbon receptor (AhR) ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), inhibits functions of human umbilical vein endothelial cells (HUVECs) and induces preeclampsia (PE)-like symptoms in rats. Herein, we tested the hypothesis that ITE impairs endothelial functions via disturbing transcriptome and phosphoproteome in HUVECs. We measured AhR activity in human maternal and umbilical vein sera from PE and normotensive (NT) pregnancies. The serum-induced changes in CYP1A1/B1 mRNA (indexes of AhR activation) in HUVECs were quantified using quantitative reverse transcription polymerase chain reaction (RT-qPCR). ITE's effects on endothelial proliferation and monolayer integrity in female and male HUVECs were determined. We profiled ITE-induced changes in transcriptome and phosphoproteome in HUVECs using RNA-seq and bottom-up phosphoproteomics, respectively. After 12 h of treatment, umbilical vein sera from PE increased CYP1A1 mRNA (1.7-fold of NT) in HUVECs, which was blocked by CH223191, an AhR antagonist. ITE dose-dependently inhibited endothelial proliferation (76%-87% of control) and time-dependently reduced endothelial integrity with a maximum inhibition (∼10%) at 40 h. ITE induced 140 and 80 differentially expressed genes in female and male HUVECs, respectively. ITE altered phosphorylation of 92 and 105 proteins at 4 and 24 h, respectively, in HUVECs. These ITE-dysregulated genes and phosphoproteins were enriched in biological functions and pathways that are relevant to heart, liver, and kidney diseases, vascular functions, and inflammatory responses. Thus, endogenous AhR ligands may impair endothelial functions by disturbing transcriptome and phosphoproteome. These AhR ligand-dysregulated genes and phosphoproteins may be therapeutic and cell sex-specific targets for PE-induced endothelial dysfunction.NEW & NOTEWORTHY Preeclampsia elevates AhR agonistic activities in fetal circulation and alters immune cell gene signatures of human umbilical vein endothelial cells (HUVECs). An endogenous AhR ligand (ITE) decreases cell proliferation and monolayer integrity in HUVECs in vitro. ITE dysregulates transcriptome in HUVECs in a fetal sex-specific manner. ITE also disrupts phosphoproteome in HUVECs. These ITE-dysregulated genes and phosphoproteins are highly relevant to diseases of the heart, vascular function, and inflammatory responses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信