Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Julia Witkowska, Małgorzata Giżyńska, Przemysław Karpowicz, Daria Sowik, Karolina Trepczyk, Fabian Hennenberg, Ashwin Chari, Artur Giełdoń, Karolina Pierzynowska, Lidia Gaffke, Grzegorz Węgrzyn, Elżbieta Jankowska
{"title":"Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome.","authors":"Julia Witkowska, Małgorzata Giżyńska, Przemysław Karpowicz, Daria Sowik, Karolina Trepczyk, Fabian Hennenberg, Ashwin Chari, Artur Giełdoń, Karolina Pierzynowska, Lidia Gaffke, Grzegorz Węgrzyn, Elżbieta Jankowska","doi":"10.1021/acschembio.4c00341","DOIUrl":null,"url":null,"abstract":"<p><p>Proteasomes catalyze protein degradation in cells and play an integral role in cellular homeostasis. Its activity decreases with age alongside the load of defective proteins, resulting from mutations or oxidative stress-induced damage. Such proteins are prone to aggregation and, if not efficiently degraded, can form toxic oligomers and amyloid plaques. Developing an effective way to activate the proteasome could prevent such pathologies. Designing activators is not easy because they do not bind in the active site, which is well-defined and highly conserved, but away from it. The structures of proteasome complexes with natural activators can help here, but these are large proteins, some even multimeric, whose activity is difficult to replace with a small-molecule compound. Nevertheless, the use of fragments of such proteins makes it possible to accumulate knowledge about the relevance of various structural elements for efficient and selective activation. Here, we presented peptidic activators of the 20S proteasome, which were designed based on both the <i>C</i>-terminal sequence of the yeast proteasome activator, Blm10 protein, and the interactions predicted by molecular modeling. These Blm analogs were able to stimulate human 20S proteasome to more efficiently degrade both small fluorogenic substrates and proteins. The best activators also demonstrated their efficacy in cell lysates. X-ray crystallography indicated that an effective modulator can bind to several sites on the surface of the proteasome without causing permanent structural changes in its immediate vicinity but affecting the active sites.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00341","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteasomes catalyze protein degradation in cells and play an integral role in cellular homeostasis. Its activity decreases with age alongside the load of defective proteins, resulting from mutations or oxidative stress-induced damage. Such proteins are prone to aggregation and, if not efficiently degraded, can form toxic oligomers and amyloid plaques. Developing an effective way to activate the proteasome could prevent such pathologies. Designing activators is not easy because they do not bind in the active site, which is well-defined and highly conserved, but away from it. The structures of proteasome complexes with natural activators can help here, but these are large proteins, some even multimeric, whose activity is difficult to replace with a small-molecule compound. Nevertheless, the use of fragments of such proteins makes it possible to accumulate knowledge about the relevance of various structural elements for efficient and selective activation. Here, we presented peptidic activators of the 20S proteasome, which were designed based on both the C-terminal sequence of the yeast proteasome activator, Blm10 protein, and the interactions predicted by molecular modeling. These Blm analogs were able to stimulate human 20S proteasome to more efficiently degrade both small fluorogenic substrates and proteins. The best activators also demonstrated their efficacy in cell lysates. X-ray crystallography indicated that an effective modulator can bind to several sites on the surface of the proteasome without causing permanent structural changes in its immediate vicinity but affecting the active sites.

蛋白酶体在细胞中催化蛋白质降解,在细胞平衡中发挥着不可或缺的作用。随着年龄的增长,蛋白酶体的活性会随着突变或氧化应激引起的损伤所导致的缺陷蛋白质负荷而降低。这些蛋白质容易聚集,如果不能有效降解,就会形成有毒的寡聚体和淀粉样蛋白斑块。开发一种激活蛋白酶体的有效方法可以预防此类病症。设计激活剂并非易事,因为激活剂并不与活性位点结合,而活性位点是明确界定且高度保守的。蛋白酶体与天然激活剂的复合物结构可以在这方面提供帮助,但这些复合物都是大型蛋白质,有些甚至是多聚体,其活性很难被小分子化合物所取代。不过,利用这些蛋白质的片段可以积累关于各种结构元素与高效和选择性激活的相关性的知识。在这里,我们介绍了 20S 蛋白酶体的多肽激活剂,它们是根据酵母蛋白酶体激活剂 Blm10 蛋白的 C 端序列和分子建模预测的相互作用设计的。这些 Blm 类似物能够刺激人类 20S 蛋白酶体更有效地降解小型荧光底物和蛋白质。最佳激活剂在细胞裂解液中也显示了其功效。X 射线晶体学表明,有效的调节剂可以与蛋白酶体表面的多个位点结合,而不会导致其附近的结构发生永久性变化,但会影响活性位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信