A multianalytical approach to benzodiazepine derivatives for the corrosion protection of mild steel in HCl solutions: Electrochemical analysis, SEM/EDX, XPS, DFT, and MDS calculations
Otmane Kharbouch, Khadija Dahmani, Issam Saber, Marouane El-alouani, Nordine Errahamany, Fatima El hajri, Mouhsine Galai, Said Boukhris, Mohamed Ebn Touhami, Hakima Nassali, Abeer A. AlObaid, Basheer M. Al-Maswari, Mohammad K. Al-Sadoon
{"title":"A multianalytical approach to benzodiazepine derivatives for the corrosion protection of mild steel in HCl solutions: Electrochemical analysis, SEM/EDX, XPS, DFT, and MDS calculations","authors":"Otmane Kharbouch, Khadija Dahmani, Issam Saber, Marouane El-alouani, Nordine Errahamany, Fatima El hajri, Mouhsine Galai, Said Boukhris, Mohamed Ebn Touhami, Hakima Nassali, Abeer A. AlObaid, Basheer M. Al-Maswari, Mohammad K. Al-Sadoon","doi":"10.1002/apj.3164","DOIUrl":null,"url":null,"abstract":"<p>This study takes a detailed look at the corrosion inhibition capabilities of two benzodiazepine-derived organic compounds, 3,3-dimethyl-11-(4-nitrophenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]diazepin-1-one (PNO) and 3,3-dimethyl-11-(2-nitrophenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]diazepin-1-one (ONO), in a 1.0-M hydrochloric acid environment using a variety of analytical methods, including electrochemical approaches — electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarization (PDP). The results show that the concentration-dependent inhibitory efficacy of PNO and ONO increases with increasing concentration. Both inhibitors exhibit mixed-type behaviour, which is confirmed by the polarization results. At the optimum concentration, the inhibition efficiencies of PNO and ONO are 92.9% (PNO) and 87.6% (ONO), respectively. The effective adsorption of these inhibitors on the metal surface was also confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The existence of a barrier layer surrounding the mild steel was demonstrated using scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX), all of which were used to study the surface characterization. The most important interactions with the iron surface are achieved by inhibitors with electron-accepting properties, according to density functional theory results and molecular dynamic simulation (MDS). With encouraging prospects for industry and metal preservation, these results pave the way for promising applications for effective corrosion protection in a 1.0-M HCl environment.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"20 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3164","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study takes a detailed look at the corrosion inhibition capabilities of two benzodiazepine-derived organic compounds, 3,3-dimethyl-11-(4-nitrophenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]diazepin-1-one (PNO) and 3,3-dimethyl-11-(2-nitrophenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]diazepin-1-one (ONO), in a 1.0-M hydrochloric acid environment using a variety of analytical methods, including electrochemical approaches — electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarization (PDP). The results show that the concentration-dependent inhibitory efficacy of PNO and ONO increases with increasing concentration. Both inhibitors exhibit mixed-type behaviour, which is confirmed by the polarization results. At the optimum concentration, the inhibition efficiencies of PNO and ONO are 92.9% (PNO) and 87.6% (ONO), respectively. The effective adsorption of these inhibitors on the metal surface was also confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The existence of a barrier layer surrounding the mild steel was demonstrated using scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX), all of which were used to study the surface characterization. The most important interactions with the iron surface are achieved by inhibitors with electron-accepting properties, according to density functional theory results and molecular dynamic simulation (MDS). With encouraging prospects for industry and metal preservation, these results pave the way for promising applications for effective corrosion protection in a 1.0-M HCl environment.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).