Wenndy Pantoja-Romero, Yolanda Aysa-Martínez, Alexis Lavín-Flores, Nataniel Medina-Berrios, Marvin J. Bayro, Gerardo Morell, Brad R. Weiner, Joaquín Coronas
{"title":"Andrographolide Encapsulation in Metal-Organic Frameworks (MOFs) via Solvent-Free Process at High Pressure","authors":"Wenndy Pantoja-Romero, Yolanda Aysa-Martínez, Alexis Lavín-Flores, Nataniel Medina-Berrios, Marvin J. Bayro, Gerardo Morell, Brad R. Weiner, Joaquín Coronas","doi":"10.1002/ejic.202400511","DOIUrl":null,"url":null,"abstract":"<p>Andrographolide (ADG) encapsulation was carried out on MOFs MIL-53(Al) and ZIF-8 by high-pressure (0.3 GPa) contact. This methodology is not only environment-friendly but also energy/time-saving and gives rise to ADG-MOFs with physical features equivalent to those of materials obtained by common liquid phase encapsulation. The loaded MOFs were characterized through TEM, SEM, XRD, TGA, FT-IR, BET, and NMR. The observed decrease in the intensity of ADG XRD peaks is due to the adsorption of ADG into the MOFs. TGA showed the decomposition step of ADG in the range of 200–300 °C in both loaded MOFs. FT-IR also showed intense signals of the ADG in the synthesized materials. The dissolution profile of ADG in MIL-53(Al) in PBS (pH=7.4) was carried out showing that the drug was released up to 96 % after 75 h. Solid-state NMR confirmed the interactions between ADG molecules and ZIF-8 groups and the formation of a hydrogen bond between the carboxylic group of ADG and the hydroxyl group of MIL-53(Al). Coefficient partition studies determined that both MOFs did not improve the hydrophilicity of the ADG, due to the loading of the drug preferably occurring by interactions in the hydrophobic areas within the pores of the MOFs.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"27 36","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejic.202400511","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202400511","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Andrographolide (ADG) encapsulation was carried out on MOFs MIL-53(Al) and ZIF-8 by high-pressure (0.3 GPa) contact. This methodology is not only environment-friendly but also energy/time-saving and gives rise to ADG-MOFs with physical features equivalent to those of materials obtained by common liquid phase encapsulation. The loaded MOFs were characterized through TEM, SEM, XRD, TGA, FT-IR, BET, and NMR. The observed decrease in the intensity of ADG XRD peaks is due to the adsorption of ADG into the MOFs. TGA showed the decomposition step of ADG in the range of 200–300 °C in both loaded MOFs. FT-IR also showed intense signals of the ADG in the synthesized materials. The dissolution profile of ADG in MIL-53(Al) in PBS (pH=7.4) was carried out showing that the drug was released up to 96 % after 75 h. Solid-state NMR confirmed the interactions between ADG molecules and ZIF-8 groups and the formation of a hydrogen bond between the carboxylic group of ADG and the hydroxyl group of MIL-53(Al). Coefficient partition studies determined that both MOFs did not improve the hydrophilicity of the ADG, due to the loading of the drug preferably occurring by interactions in the hydrophobic areas within the pores of the MOFs.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.