Chandru Dhandapani, Colleen M. Kaul, Kyle G. Pressel, Peter N. Blossey, Robert Wood, Gourihar Kulkarni
{"title":"Sensitivities of Large Eddy Simulations of Aerosol Plume Transport and Cloud Response","authors":"Chandru Dhandapani, Colleen M. Kaul, Kyle G. Pressel, Peter N. Blossey, Robert Wood, Gourihar Kulkarni","doi":"10.1029/2024MS004546","DOIUrl":null,"url":null,"abstract":"<p>Cloud responses to surface-based sources of aerosol perturbation partially depend on how turbulent transport of the aerosol to cloud base affects the spatial and temporal distribution of aerosol. Here, scenarios of plume injection below a marine stratocumulus cloud are modeled using large eddy simulations coupled to a prognostic bulk aerosol and cloud microphysics scheme. Both passive plumes, consisting of an inert tracer, and active plumes are investigated, where the latter are representative of saltwater droplet plumes such as have been proposed for marine cloud brightening. Passive plume scenarios show higher in-plume cloud brightness (relative to out-of-plume) due to the predominant transport of the passive plume tracer from the near-surface to the cloud layer within updrafts. These updrafts rise into brighter areas within the cloud deck, even in the absence of an aerosol perturbation associated with an active plume. Comparing albedo at in-plume to out-of-plume locations associates the inert plume with the brightest cloud locations, without any causal effect of the plume on the cloud. Numerical sensitivities are first assessed to establish a suitable model configuration. Then sensitivity to particle injection rate is investigated. Trade-offs are identified between the number of injected particles and the suppressive effect of droplet evaporation on plume loft and spread. Furthermore, as the near-field in-plume brightening effect does not depend significantly on injection rate given a suitable definition of perturbed versus unperturbed regions of the flow, plume area is a key controlling factor on the overall cloud brightening effect of an aerosol perturbation.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004546","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004546","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud responses to surface-based sources of aerosol perturbation partially depend on how turbulent transport of the aerosol to cloud base affects the spatial and temporal distribution of aerosol. Here, scenarios of plume injection below a marine stratocumulus cloud are modeled using large eddy simulations coupled to a prognostic bulk aerosol and cloud microphysics scheme. Both passive plumes, consisting of an inert tracer, and active plumes are investigated, where the latter are representative of saltwater droplet plumes such as have been proposed for marine cloud brightening. Passive plume scenarios show higher in-plume cloud brightness (relative to out-of-plume) due to the predominant transport of the passive plume tracer from the near-surface to the cloud layer within updrafts. These updrafts rise into brighter areas within the cloud deck, even in the absence of an aerosol perturbation associated with an active plume. Comparing albedo at in-plume to out-of-plume locations associates the inert plume with the brightest cloud locations, without any causal effect of the plume on the cloud. Numerical sensitivities are first assessed to establish a suitable model configuration. Then sensitivity to particle injection rate is investigated. Trade-offs are identified between the number of injected particles and the suppressive effect of droplet evaporation on plume loft and spread. Furthermore, as the near-field in-plume brightening effect does not depend significantly on injection rate given a suitable definition of perturbed versus unperturbed regions of the flow, plume area is a key controlling factor on the overall cloud brightening effect of an aerosol perturbation.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.