{"title":"ZnO-carbon nanomaterials-based hybrid platforms for electrochemical sensing of favipiravir as an antiviral medication for COVID-19","authors":"Mobina Neshati, Bahare Sabeti, Fereshteh Chekin","doi":"10.1007/s13738-024-03160-1","DOIUrl":null,"url":null,"abstract":"<div><p>Favipiravir (FAV) is an antiviral drug that was recently approved for the management of COVID-19 infection. This work aimed to develop a validated sensitive method, using sensor based on porous reduced graphene oxide decorated with zinc oxide nanoparticles (ZnO-prGO) for the determination of FAV in pharmaceutical and biological samples. FE-SEM images showed that prGO nanosheets were decorated by flower-like ZnO nanoparticles with a diameter in the range of 23–63 nm found to be in good agreement with the reported XRD patterns. Electrochemical test showed that the ZnO-prGO modified carbon paste electrode (ZnO-prGO/CPE) had stronger electrochemical activity and higher effective real surface area than that of prGO/CPE and CPE toward FAV oxidation. Interestingly, ZnO-prGO/CPE indicated an excellent electrocatalytic activity for FAV. Under the optimal experimental conditions, a good linear in the concentration range of 0.05–15 μmol L<sup>−1</sup> with the low limit of detection (7.32 nmol L<sup>−1</sup>) and high sensitivity (8.90 μA μmol L<sup>−1</sup>) was achieved. Furthermore, the proposed sensor was successfully applied to the determination of FAV in tablets, plasma and urine. The unique physical structure of prGO-ZnO, as well as its chemical and electrical properties, make it ideal to use in sensor technologies.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"22 2","pages":"433 - 444"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03160-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Favipiravir (FAV) is an antiviral drug that was recently approved for the management of COVID-19 infection. This work aimed to develop a validated sensitive method, using sensor based on porous reduced graphene oxide decorated with zinc oxide nanoparticles (ZnO-prGO) for the determination of FAV in pharmaceutical and biological samples. FE-SEM images showed that prGO nanosheets were decorated by flower-like ZnO nanoparticles with a diameter in the range of 23–63 nm found to be in good agreement with the reported XRD patterns. Electrochemical test showed that the ZnO-prGO modified carbon paste electrode (ZnO-prGO/CPE) had stronger electrochemical activity and higher effective real surface area than that of prGO/CPE and CPE toward FAV oxidation. Interestingly, ZnO-prGO/CPE indicated an excellent electrocatalytic activity for FAV. Under the optimal experimental conditions, a good linear in the concentration range of 0.05–15 μmol L−1 with the low limit of detection (7.32 nmol L−1) and high sensitivity (8.90 μA μmol L−1) was achieved. Furthermore, the proposed sensor was successfully applied to the determination of FAV in tablets, plasma and urine. The unique physical structure of prGO-ZnO, as well as its chemical and electrical properties, make it ideal to use in sensor technologies.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.