Strain-modulation on electronic structures and magnetic properties of Fe doped monolayer 2H-MoS2: the first-principles calculation study

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Wen-jing Lan, Hai-xin Li, Tong Du, Xue-ling Lin, Feng-chun Pan
{"title":"Strain-modulation on electronic structures and magnetic properties of Fe doped monolayer 2H-MoS2: the first-principles calculation study","authors":"Wen-jing Lan,&nbsp;Hai-xin Li,&nbsp;Tong Du,&nbsp;Xue-ling Lin,&nbsp;Feng-chun Pan","doi":"10.1140/epjb/s10051-025-00872-y","DOIUrl":null,"url":null,"abstract":"<div><p>The first-principles calculation method is performed to explore the monolayer 2<i>H</i>-MoS<sub>2</sub>:Fe semiconductors with intrinsic ferromagnetism and strong ferromagnetic coupling by strain-modulation. In this study, we demonstrate that the biaxial strain can effectively regulate the distribution of local magnetic moment, magnetic coupling ground state types and strength. The studied results indicate that one Fe<sub>Mo</sub> dopant will bring 2 <span>\\(\\mu_{{\\text{B}}}\\)</span> local magnetic moment, which is not affected by strains in range of − 6~6%. However, electronic configuration, occupation and magnetic moment distribution are closely related to strains. Moreover, smaller compressive strain can effectively strengthen ferromagnetic interactions between two Fe<sub>Mo</sub> substitutions, and the most energy gains of ferromagnetic coupling reach to 153.9 meV under − 2% strain. However, the ferromagnetic ground state translates into antiferromagnetic one as strain in the range of − 6~ − 2.5%. The changes in magnetic moment and magnetic interaction originate from the competition between crystal-filed splitting and spin splitting under different strains. The theoretical results presented here predict that modulating the biaxial strain could be a very significant avenue to obtain intrinsic ferromagnetic 2<i>H</i>-MoS<sub>2</sub>:Fe semiconductors.</p><h3>Graphical abstract</h3><p>The effect of strain on the electronic structures and magnetic properties of Fe doped monolayer 2<i>H</i>-MoS<sub>2</sub> were studied by first-principles calculations. We found that electronic configuration, occupancy and magnetic moment distribution are closely related to strains. Smaller compressive strain can effectively strengthen FM interactions between two Fe<sub>Mo</sub> substitutions, and the most energy gains of FM coupling up to 153.9 meV under − 2% strain. However, the FM ground state translate into AFM one as strain in the range of − 6~− 2.5%. Our theoretical predictions highlight the important contribution of strain to electronic structures and magnetic properties, and present a valid avenue for the future design of high <i>T</i><sub><i>C</i></sub> material in monolayer MoS<sub>2</sub>: Fe system.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00872-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The first-principles calculation method is performed to explore the monolayer 2H-MoS2:Fe semiconductors with intrinsic ferromagnetism and strong ferromagnetic coupling by strain-modulation. In this study, we demonstrate that the biaxial strain can effectively regulate the distribution of local magnetic moment, magnetic coupling ground state types and strength. The studied results indicate that one FeMo dopant will bring 2 \(\mu_{{\text{B}}}\) local magnetic moment, which is not affected by strains in range of − 6~6%. However, electronic configuration, occupation and magnetic moment distribution are closely related to strains. Moreover, smaller compressive strain can effectively strengthen ferromagnetic interactions between two FeMo substitutions, and the most energy gains of ferromagnetic coupling reach to 153.9 meV under − 2% strain. However, the ferromagnetic ground state translates into antiferromagnetic one as strain in the range of − 6~ − 2.5%. The changes in magnetic moment and magnetic interaction originate from the competition between crystal-filed splitting and spin splitting under different strains. The theoretical results presented here predict that modulating the biaxial strain could be a very significant avenue to obtain intrinsic ferromagnetic 2H-MoS2:Fe semiconductors.

Graphical abstract

The effect of strain on the electronic structures and magnetic properties of Fe doped monolayer 2H-MoS2 were studied by first-principles calculations. We found that electronic configuration, occupancy and magnetic moment distribution are closely related to strains. Smaller compressive strain can effectively strengthen FM interactions between two FeMo substitutions, and the most energy gains of FM coupling up to 153.9 meV under − 2% strain. However, the FM ground state translate into AFM one as strain in the range of − 6~− 2.5%. Our theoretical predictions highlight the important contribution of strain to electronic structures and magnetic properties, and present a valid avenue for the future design of high TC material in monolayer MoS2: Fe system.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信