Samir El Masri, Felix Hartung, Thomas Berger, Michael Kaliske
{"title":"Numerical evaluation of wear parameters using meta-models","authors":"Samir El Masri, Felix Hartung, Thomas Berger, Michael Kaliske","doi":"10.1007/s00289-024-05537-x","DOIUrl":null,"url":null,"abstract":"<div><p>Wear parameters identified by linear friction tester (LFT) experiments overestimate the wear mass loss when applied on a laboratory abrasion & skid tester 100 (LAT100) simulation. On the other hand, the identification of wear parameters directly from the LAT100 experiment can be challenging since variables such as the contact area and the slip velocity are not measured experimentally and need to be assumed. To improve the identification process, numerical calibration is used as a more suitable approach. This approach relies on meta-models as a target function for minimization. The meta-models are generated using a sample of wear parameters applied to an LAT100 finite element modeling (FEM) to calculate the corresponding wear mass.. In this model, a transport velocity is defined for the rolling simulation, and an arbitrary <span>lagrangian–eulerian</span> (ALE) adaptive meshing approach is adopted for the wear modeling. For the wear model, a combination of <span>archard</span>’s wear model and <span>schallamach</span>’s abrasion law is used. This model contains a pair of wear parameters to be identified. The ALE adaptive meshing technique moves the nodes independently of the material. Since the mesh topology remains the same, failure of the simulation occurs if the wear volume loss exceeds that of the element. Meta-models are created to extend wear modeling beyond this failure. Once the meta-models are created, they are used as a target function for the minimization algorithm. The minimization algorithm aims to find the optimal wear parameters by minimizing the difference between experimentally observed and numerically produced wear mass loss. The minimization algorithm inputs a set of wear parameters into the meta-models which in turn yield a prediction of the wear mass loss. The process is carried out until an optimum parameter set is identified. Such an approach has a lower accuracy if the parameters are identified directly from the experiment using assumptions regarding the contact shear stress and the sliding velocity. Nonetheless, the main advantage of parameters identified using the meta-model approach is the usability of these parameters in an LAT100 model.\n</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"82 2","pages":"563 - 578"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00289-024-05537-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05537-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Wear parameters identified by linear friction tester (LFT) experiments overestimate the wear mass loss when applied on a laboratory abrasion & skid tester 100 (LAT100) simulation. On the other hand, the identification of wear parameters directly from the LAT100 experiment can be challenging since variables such as the contact area and the slip velocity are not measured experimentally and need to be assumed. To improve the identification process, numerical calibration is used as a more suitable approach. This approach relies on meta-models as a target function for minimization. The meta-models are generated using a sample of wear parameters applied to an LAT100 finite element modeling (FEM) to calculate the corresponding wear mass.. In this model, a transport velocity is defined for the rolling simulation, and an arbitrary lagrangian–eulerian (ALE) adaptive meshing approach is adopted for the wear modeling. For the wear model, a combination of archard’s wear model and schallamach’s abrasion law is used. This model contains a pair of wear parameters to be identified. The ALE adaptive meshing technique moves the nodes independently of the material. Since the mesh topology remains the same, failure of the simulation occurs if the wear volume loss exceeds that of the element. Meta-models are created to extend wear modeling beyond this failure. Once the meta-models are created, they are used as a target function for the minimization algorithm. The minimization algorithm aims to find the optimal wear parameters by minimizing the difference between experimentally observed and numerically produced wear mass loss. The minimization algorithm inputs a set of wear parameters into the meta-models which in turn yield a prediction of the wear mass loss. The process is carried out until an optimum parameter set is identified. Such an approach has a lower accuracy if the parameters are identified directly from the experiment using assumptions regarding the contact shear stress and the sliding velocity. Nonetheless, the main advantage of parameters identified using the meta-model approach is the usability of these parameters in an LAT100 model.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."