Claudia Fabiani, Edurne Erkizia, Didier Snoeck, Magdalena Rajczakowska, Ilda Tole, Renan Rocha Ribeiro, Miguel Azenha, Antonio Caggiano, Anna Laura Pisello
{"title":"Reviewing experimental studies on latent thermal energy storage in cementitious composites: report of the RILEM TC 299-TES","authors":"Claudia Fabiani, Edurne Erkizia, Didier Snoeck, Magdalena Rajczakowska, Ilda Tole, Renan Rocha Ribeiro, Miguel Azenha, Antonio Caggiano, Anna Laura Pisello","doi":"10.1617/s11527-024-02544-2","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, substantial progress has been achieved in the development of multifunctional cement-based composites, targeting improved energy efficiency and environmental sustainability while minimizing material depletion. Leveraging the high thermal capacity of these materials facilitates controlled heat storage and release, providing versatile applications in renewable energy management and heat regulation, influencing structural integrity and long-term resistance. Recent research has integrated phase change materials (PCMs) into these composites to harness their superior thermal energy density. This comprehensive review examines the latest experimental research findings on these hybrid materials, emphasizing their thermo-physical behaviour and influence on structural properties and durability. Furthermore, it provides an overview of PCM characteristics and their integration into cement-based matrices. It critically analyses the interaction between PCMs and the cement matrix, explaining effects on structural performance, hydration processes, and freeze–thaw mechanisms. Furthermore, the paper explores recent experimental techniques and protocols for measuring and assessing the structural and thermo-physical properties of these composites. By identifying key trends, the review aims to provide valuable insights into the design and optimization of cement-based composites with PCMs, ultimately enhancing energy efficiency and resource conservation.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02544-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, substantial progress has been achieved in the development of multifunctional cement-based composites, targeting improved energy efficiency and environmental sustainability while minimizing material depletion. Leveraging the high thermal capacity of these materials facilitates controlled heat storage and release, providing versatile applications in renewable energy management and heat regulation, influencing structural integrity and long-term resistance. Recent research has integrated phase change materials (PCMs) into these composites to harness their superior thermal energy density. This comprehensive review examines the latest experimental research findings on these hybrid materials, emphasizing their thermo-physical behaviour and influence on structural properties and durability. Furthermore, it provides an overview of PCM characteristics and their integration into cement-based matrices. It critically analyses the interaction between PCMs and the cement matrix, explaining effects on structural performance, hydration processes, and freeze–thaw mechanisms. Furthermore, the paper explores recent experimental techniques and protocols for measuring and assessing the structural and thermo-physical properties of these composites. By identifying key trends, the review aims to provide valuable insights into the design and optimization of cement-based composites with PCMs, ultimately enhancing energy efficiency and resource conservation.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.