Tiangang Cui, Josef Dick, Friedrich Pillichshammer
{"title":"Quasi-Monte Carlo methods for mixture distributions and approximated distributions via piecewise linear interpolation","authors":"Tiangang Cui, Josef Dick, Friedrich Pillichshammer","doi":"10.1007/s10444-025-10223-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study numerical integration over bounded regions in <span>\\(\\mathbb {R}^s\\)</span>, <span>\\(s \\ge 1\\)</span>, with respect to some probability measure. We replace random sampling with quasi-Monte Carlo methods, where the underlying point set is derived from deterministic constructions which aim to fill the space more evenly than random points. Ordinarily, such quasi-Monte Carlo point sets are designed for the uniform measure, and the theory only works for product measures when a coordinate-wise transformation is applied. Going beyond this setting, we first consider the case where the target density is a mixture distribution where each term in the mixture comes from a product distribution. Next, we consider target densities which can be approximated with such mixture distributions. In order to be able to use an approximation of the target density, we require the approximation to be a sum of coordinate-wise products and that the approximation is positive everywhere (so that they can be re-scaled to probability density functions). We use tensor product hat function approximations for this purpose here, since a hat function approximation of a positive function is itself positive. We also study more complex algorithms, where we first approximate the target density with a general Gaussian mixture distribution and approximate this mixture distribution with an adaptive hat function approximation on rotated intervals. The Gaussian mixture approximation allows us (at least to some degree) to locate the essential parts of the target density, whereas the adaptive hat function approximation allows us to approximate the finer structure of the target density. We prove convergence rates for each of the integration techniques based on quasi-Monte Carlo sampling for integrands with bounded partial mixed derivatives. The employed algorithms are based on digital (<i>t</i>, <i>s</i>)-sequences over the finite field <span>\\(\\mathbb {F}_2\\)</span> and an inversion method. Numerical examples illustrate the performance of the algorithms for some target densities and integrands.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-025-10223-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10223-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study numerical integration over bounded regions in \(\mathbb {R}^s\), \(s \ge 1\), with respect to some probability measure. We replace random sampling with quasi-Monte Carlo methods, where the underlying point set is derived from deterministic constructions which aim to fill the space more evenly than random points. Ordinarily, such quasi-Monte Carlo point sets are designed for the uniform measure, and the theory only works for product measures when a coordinate-wise transformation is applied. Going beyond this setting, we first consider the case where the target density is a mixture distribution where each term in the mixture comes from a product distribution. Next, we consider target densities which can be approximated with such mixture distributions. In order to be able to use an approximation of the target density, we require the approximation to be a sum of coordinate-wise products and that the approximation is positive everywhere (so that they can be re-scaled to probability density functions). We use tensor product hat function approximations for this purpose here, since a hat function approximation of a positive function is itself positive. We also study more complex algorithms, where we first approximate the target density with a general Gaussian mixture distribution and approximate this mixture distribution with an adaptive hat function approximation on rotated intervals. The Gaussian mixture approximation allows us (at least to some degree) to locate the essential parts of the target density, whereas the adaptive hat function approximation allows us to approximate the finer structure of the target density. We prove convergence rates for each of the integration techniques based on quasi-Monte Carlo sampling for integrands with bounded partial mixed derivatives. The employed algorithms are based on digital (t, s)-sequences over the finite field \(\mathbb {F}_2\) and an inversion method. Numerical examples illustrate the performance of the algorithms for some target densities and integrands.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.