ZnO/Co3O4 supported on carbon nanotubes as anode materials for high-performance lithium-ion batteries†

Songli Qiu, Jiafeng Wu, Liyu Chen and Yingwei Li
{"title":"ZnO/Co3O4 supported on carbon nanotubes as anode materials for high-performance lithium-ion batteries†","authors":"Songli Qiu, Jiafeng Wu, Liyu Chen and Yingwei Li","doi":"10.1039/D4SU00691G","DOIUrl":null,"url":null,"abstract":"<p >Metallic oxides show great potential in achieving high specific capacity as electrodes for lithium-ion batteries (LIBs). However, their inherent poor conductivity and significant volume expansion often result in inferior rate performance and reduced stability in electrochemical cycles. Here, we report a composite of ZnO and Co<small><sub>3</sub></small>O<small><sub>4</sub></small> wrapped in carbon nanotubes (denoted as ZnO/Co<small><sub>3</sub></small>O<small><sub>4</sub></small>@CNTs) with hierarchically porous architecture <em>via</em> pyrolysis–oxidation of a Zn/Co-zeolitic imidazolate framework (ZIF) precursor. The dual-transition metal oxides can undergo abundant redox and alloying reactions with enhanced redox kinetics, while the CNT layers facilitate electron transfer and mitigate volume expansion. As a result, ZnO/Co<small><sub>3</sub></small>O<small><sub>4</sub></small>@CNTs exhibits high electrochemical performance with excellent lithium storage capability and high electronic and ionic diffusion kinetics, making it a promising anode material for LIBs. It achieves a high reversible capacity of 1156 mA h g<small><sup>−1</sup></small> at a current density of 200 mA g<small><sup>−1</sup></small> after 200 cycles, with an extremely low capacity degradation rate of about 0.54‰ per cycle.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 995-1002"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00691g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00691g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic oxides show great potential in achieving high specific capacity as electrodes for lithium-ion batteries (LIBs). However, their inherent poor conductivity and significant volume expansion often result in inferior rate performance and reduced stability in electrochemical cycles. Here, we report a composite of ZnO and Co3O4 wrapped in carbon nanotubes (denoted as ZnO/Co3O4@CNTs) with hierarchically porous architecture via pyrolysis–oxidation of a Zn/Co-zeolitic imidazolate framework (ZIF) precursor. The dual-transition metal oxides can undergo abundant redox and alloying reactions with enhanced redox kinetics, while the CNT layers facilitate electron transfer and mitigate volume expansion. As a result, ZnO/Co3O4@CNTs exhibits high electrochemical performance with excellent lithium storage capability and high electronic and ionic diffusion kinetics, making it a promising anode material for LIBs. It achieves a high reversible capacity of 1156 mA h g−1 at a current density of 200 mA g−1 after 200 cycles, with an extremely low capacity degradation rate of about 0.54‰ per cycle.

Abstract Image

碳纳米管负载ZnO/Co3O4作为高性能锂离子电池的负极材料†
金属氧化物作为锂离子电池的电极具有很高的比容量潜力。然而,它们固有的导电性差和显著的体积膨胀往往导致其倍率性能下降和电化学循环稳定性降低。在这里,我们报道了一种ZnO和Co3O4包裹在碳纳米管(表示为ZnO/Co3O4@CNTs)中的复合材料,通过热解氧化Zn/ co -沸石酰酰唑盐框架(ZIF)前驱体,具有分层多孔结构。双过渡金属氧化物可以进行丰富的氧化还原和合金反应,并具有增强的氧化还原动力学,而碳纳米管层促进电子转移并减轻体积膨胀。结果表明,ZnO/Co3O4@CNTs具有优异的电化学性能,具有优异的锂存储能力和较高的电子和离子扩散动力学,是一种很有前途的锂离子电池负极材料。在200 mA g−1的电流密度下,经过200次循环后,该电池的可逆容量达到1156 mA h g−1,且每循环的容量退化率极低,约为0.54‰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信