Enhanced emission spectra from flame-assisted LIBS for high-sensitivity detection of Pb in water

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Xiangtong Wan, Xin Yu, Yutong Chen, Ying Wang, Anmin Chen and Mingxing Jin
{"title":"Enhanced emission spectra from flame-assisted LIBS for high-sensitivity detection of Pb in water","authors":"Xiangtong Wan, Xin Yu, Yutong Chen, Ying Wang, Anmin Chen and Mingxing Jin","doi":"10.1039/D4JA00294F","DOIUrl":null,"url":null,"abstract":"<p >Laser-induced breakdown spectroscopy (LIBS) is a powerful technique for detecting and analyzing material elements through plasma emission generated by high-power laser pulses. In this study, the enhancement of Cu plasma emission spectra using flame-assisted LIBS was investigated. The plasma temperature and electron number density were calculated to understand the enhancement mechanism. Additionally, the dry droplet pretreatment method was combined with flame-assisted LIBS to quantitatively analyze trace amounts of heavy metal Pb in aqueous solutions. A calibration curve for Pb was established, and the limits of detection (LOD) for Pb with and without flame assistance were determined. The LOD without flame was 15.120 ng mL<small><sup>−1</sup></small>, while the LOD with flame assistance was significantly lower at 0.741 ng mL<small><sup>−1</sup></small>, demonstrating a 20-fold improvement. The <em>R</em><small><sup>2</sup></small> values of the calibration curves with and without flame assistance were 0.987 and 0.999, respectively. These results confirm that the flame-assisted method significantly enhances LIBS signal intensity, and the combination with dry droplet pretreatment improves the sensitivity for analyzing trace metal elements in water.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 2","pages":" 365-373"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ja/d4ja00294f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-induced breakdown spectroscopy (LIBS) is a powerful technique for detecting and analyzing material elements through plasma emission generated by high-power laser pulses. In this study, the enhancement of Cu plasma emission spectra using flame-assisted LIBS was investigated. The plasma temperature and electron number density were calculated to understand the enhancement mechanism. Additionally, the dry droplet pretreatment method was combined with flame-assisted LIBS to quantitatively analyze trace amounts of heavy metal Pb in aqueous solutions. A calibration curve for Pb was established, and the limits of detection (LOD) for Pb with and without flame assistance were determined. The LOD without flame was 15.120 ng mL−1, while the LOD with flame assistance was significantly lower at 0.741 ng mL−1, demonstrating a 20-fold improvement. The R2 values of the calibration curves with and without flame assistance were 0.987 and 0.999, respectively. These results confirm that the flame-assisted method significantly enhances LIBS signal intensity, and the combination with dry droplet pretreatment improves the sensitivity for analyzing trace metal elements in water.

Abstract Image

用于高灵敏度检测水中铅的火焰辅助 LIBS 增强发射光谱
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信