Cold plasma activated CO2 desorption from calcium carbonate for carbon capture†

Hongtao Zhong, Daniel Piriaei, Gennaro Liccardo, Jieun Kang, Benjamin Wang, Matteo Cargnello and Mark A. Cappelli
{"title":"Cold plasma activated CO2 desorption from calcium carbonate for carbon capture†","authors":"Hongtao Zhong, Daniel Piriaei, Gennaro Liccardo, Jieun Kang, Benjamin Wang, Matteo Cargnello and Mark A. Cappelli","doi":"10.1039/D4SU00491D","DOIUrl":null,"url":null,"abstract":"<p >This work investigates the non-equilibrium regeneration of one scalable sorbent material for carbon capture, calcium oxide, in a customized flow reactor coupled to a low-temperature atmospheric-pressure plasma source. The results show that such a plasma is capable of desorbing CO<small><sub>2</sub></small> from CaCO<small><sub>3</sub></small>, with an operating temperature far below the thermal decomposition temperature of carbonate. The desorbed CO<small><sub>2</sub></small> is further converted to CO <em>in situ</em>. The energy cost is 1.90 × 10<small><sup>3</sup></small> kWh per tCO<small><sub>2</sub></small>, as the same order of magnitude as the state-of-the-art high temperature regeneration technology. A non-equilibrium kinetic mechanism is proposed in which CO<small><sub>2</sub></small> desorption is coupled into air plasma chemistry. Electron-impact reactions in air lead to the generation of vibrationally excited nitrogen and ozone. Subsequent quenching of atomic oxygen on the carbonate surface can regenerate CaO, while NO<small><sub><em>x</em></sub></small> will pollute the surface. Compared with the previous methods used in sorbent regeneration, plasma-based technologies offer an electrified, sustainable, and low-temperature solution based on the non-equilibrium plasma chemistry. Possible scaling strategies include fluidization, flow pulsation, and plasma catalysis. This work demonstrates the feasibility of non-equilibrium plasma processing of the sorbent material for cyclic capture and regeneration in atmospheric air using thermally low-intensity processes.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 973-982"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00491d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00491d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the non-equilibrium regeneration of one scalable sorbent material for carbon capture, calcium oxide, in a customized flow reactor coupled to a low-temperature atmospheric-pressure plasma source. The results show that such a plasma is capable of desorbing CO2 from CaCO3, with an operating temperature far below the thermal decomposition temperature of carbonate. The desorbed CO2 is further converted to CO in situ. The energy cost is 1.90 × 103 kWh per tCO2, as the same order of magnitude as the state-of-the-art high temperature regeneration technology. A non-equilibrium kinetic mechanism is proposed in which CO2 desorption is coupled into air plasma chemistry. Electron-impact reactions in air lead to the generation of vibrationally excited nitrogen and ozone. Subsequent quenching of atomic oxygen on the carbonate surface can regenerate CaO, while NOx will pollute the surface. Compared with the previous methods used in sorbent regeneration, plasma-based technologies offer an electrified, sustainable, and low-temperature solution based on the non-equilibrium plasma chemistry. Possible scaling strategies include fluidization, flow pulsation, and plasma catalysis. This work demonstrates the feasibility of non-equilibrium plasma processing of the sorbent material for cyclic capture and regeneration in atmospheric air using thermally low-intensity processes.

Abstract Image

冷等离子体活化碳酸钙中的CO2解吸,用于碳捕获†
这项工作研究了一种用于碳捕获的可扩展吸附材料氧化钙的非平衡再生,该材料在与低温常压等离子体源耦合的定制流动反应器中进行。结果表明,该等离子体能够从CaCO3中解吸CO2,其工作温度远低于碳酸盐的热分解温度。解吸的CO2在原位进一步转化为CO。能源成本为每吨二氧化碳1.90 × 103千瓦时,与最先进的高温再生技术相同的数量级。提出了CO2解吸与空气等离子体化学耦合的非平衡动力学机制。空气中的电子碰撞反应导致振动激发氮和臭氧的产生。碳酸盐表面原子氧的后续淬灭可以再生CaO,而NOx则会污染表面。与以前的吸附剂再生方法相比,基于等离子体的技术提供了一种基于非平衡等离子体化学的电气化、可持续和低温解决方案。可能的缩放策略包括流化,流动脉动和等离子体催化。这项工作证明了吸附剂材料的非平衡等离子体处理在大气中循环捕获和再生的可行性,使用热低强度过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信