Flexible fire-safe hybrid organic–inorganic cellulose aerogels from sol–gel casting†

Björn K. Birdsong, Antonio J. Capezza, Rhoda Afriyie Mensah, Patric Elf, Mikael S. Hedenqvist, Fritjof Nilsson and Richard T. Olsson
{"title":"Flexible fire-safe hybrid organic–inorganic cellulose aerogels from sol–gel casting†","authors":"Björn K. Birdsong, Antonio J. Capezza, Rhoda Afriyie Mensah, Patric Elf, Mikael S. Hedenqvist, Fritjof Nilsson and Richard T. Olsson","doi":"10.1039/D4SU00568F","DOIUrl":null,"url":null,"abstract":"<p >The flexibility of hybrid silicon-oxide cellulose aerogels was achieved through the formation of thin, uniform silica coatings on cellulose fibres, or local regions of a classical spherical aerogel (Kistler aerogel) combined with areas of less coated cellulose fibres, making use of the flexible properties of the cellulose nanofibres. Furthermore, the inclusion of cellulose during the sol–gel formation allowed the use of traditional freeze-drying instead of CO<small><sub>2</sub></small> critical point drying as a method for the removal of the liquid phase. The silicon oxide morphologies revealed the possibility of fine-tuning the coating's structure by the choice of the silicon-oxide precursors. Using methyltrimethoxysilane (MTMS) resulted in the formation of classical aerogel or spherical particles, while the use of tetraethyl orthosilicate (TEOS) yielded “pearl-necklace” fibres, and the mix of (3-aminopropyl)triethoxysilane (APTES) with MTMS yielded smooth uniform coatings. The prepared coating morphologies markedly influenced the aerogel's properties (mechanical stiffness/flexibility, flame resistance and hydrophilicity). The silica coatings endured high-temperature exposure and the thermal removal of the cellulose template without substantial morphological changes was confirmed, showing the possibility to use cellulose as an effective template for the synthesis of silicon-oxide nanofibres. The possibility to selectively control aerogel properties already at the synthesis stage, using abundant and renewable materials together with the possibility of using more energy-conservative freeze-drying (rather than critical point drying), is a promising method for more sustainable aerogel preparation towards high-end commercial applications such as electrical fuel cell insulation.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 2","pages":" 1009-1018"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00568f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00568f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The flexibility of hybrid silicon-oxide cellulose aerogels was achieved through the formation of thin, uniform silica coatings on cellulose fibres, or local regions of a classical spherical aerogel (Kistler aerogel) combined with areas of less coated cellulose fibres, making use of the flexible properties of the cellulose nanofibres. Furthermore, the inclusion of cellulose during the sol–gel formation allowed the use of traditional freeze-drying instead of CO2 critical point drying as a method for the removal of the liquid phase. The silicon oxide morphologies revealed the possibility of fine-tuning the coating's structure by the choice of the silicon-oxide precursors. Using methyltrimethoxysilane (MTMS) resulted in the formation of classical aerogel or spherical particles, while the use of tetraethyl orthosilicate (TEOS) yielded “pearl-necklace” fibres, and the mix of (3-aminopropyl)triethoxysilane (APTES) with MTMS yielded smooth uniform coatings. The prepared coating morphologies markedly influenced the aerogel's properties (mechanical stiffness/flexibility, flame resistance and hydrophilicity). The silica coatings endured high-temperature exposure and the thermal removal of the cellulose template without substantial morphological changes was confirmed, showing the possibility to use cellulose as an effective template for the synthesis of silicon-oxide nanofibres. The possibility to selectively control aerogel properties already at the synthesis stage, using abundant and renewable materials together with the possibility of using more energy-conservative freeze-drying (rather than critical point drying), is a promising method for more sustainable aerogel preparation towards high-end commercial applications such as electrical fuel cell insulation.

Abstract Image

柔性防火混合有机-无机纤维素气凝胶从溶胶-凝胶铸造†
混合氧化硅纤维素气凝胶的柔韧性是通过在纤维素纤维上形成薄而均匀的二氧化硅涂层来实现的,或者是利用纤维素纳米纤维的柔韧性,将经典球形气凝胶(奇石乐气凝胶)的局部区域与涂层较少的纤维素纤维区域结合在一起。此外,在溶胶-凝胶形成过程中纤维素的包裹性允许使用传统的冷冻干燥代替二氧化碳临界点干燥作为去除液相的方法。氧化硅的形貌揭示了通过选择氧化硅前驱体来微调涂层结构的可能性。使用甲基三甲氧基硅烷(MTMS)可以形成经典的气凝胶或球形颗粒,而使用正硅酸四乙酯(TEOS)可以得到“珍珠项链”纤维,而(3-氨基丙基)三乙氧基硅烷(APTES)与MTMS的混合可以得到光滑均匀的涂层。制备的涂层形态显著影响气凝胶的性能(机械刚度/柔韧性、阻燃性和亲水性)。二氧化硅涂层经受了高温暴露,并且纤维素模板的热去除没有发生实质性的形态变化,这表明纤维素可以作为合成氧化硅纳米纤维的有效模板。在合成阶段就有可能选择性地控制气凝胶的性质,使用丰富的可再生材料,以及使用更节能的冷冻干燥(而不是临界点干燥)的可能性,这是一种有前途的方法,可以使气凝胶制备更可持续,并走向高端商业应用,如电燃料电池绝缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信