Joon Byun;Seungmin Shin;Seorim Hwang;Jongmo Sung;Seungkwon Beack;Youngcheol Park
{"title":"Optimizations of Neural Audio Coder Toward Perceptual Transparency","authors":"Joon Byun;Seungmin Shin;Seorim Hwang;Jongmo Sung;Seungkwon Beack;Youngcheol Park","doi":"10.1109/JSTSP.2024.3437155","DOIUrl":null,"url":null,"abstract":"This paper presents comprehensive optimizations of a neural audio coder built upon a variational autoencoder (VAE) system integrated with an arithmetic coder. Our optimizations focus on two primary aspects: a novel loss function design and advanced entropy modeling of bottleneck latent embeddings. The loss function design incorporates parameters from a psychoacoustic model (PAM) into the frame-wise distortion measure, providing excellent perceptual quality. In addition, a multi-time scale discriminator is utilized to minimize distortions across adjacent frames, reducing artifacts at frame edges. Also, the coder is optimized considering three sophisticated entropy models within the latent domain: the Factorized Entropy Model (FEM), the Hyperprior Model (HPM), and the Joint Hierarchical Model (JHM). Notably, the JHM enhances context modeling across frames to effectively predict components influenced by long-term dependencies. To verify the optimization performance, we conducted extensive experiments using a dataset consisting of commercial movie clips and two additional public datasets. Objective metrics consistently demonstrated that our optimized loss function and latent modeling achieved superior performance across all test datasets compared to traditional codecs such as LAME-MP3 and FDK-AAC. Subjective assessments also indicated that our system could offer comparable or superior auditory quality to FDK-AAC.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 8","pages":"1531-1543"},"PeriodicalIF":8.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643673/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents comprehensive optimizations of a neural audio coder built upon a variational autoencoder (VAE) system integrated with an arithmetic coder. Our optimizations focus on two primary aspects: a novel loss function design and advanced entropy modeling of bottleneck latent embeddings. The loss function design incorporates parameters from a psychoacoustic model (PAM) into the frame-wise distortion measure, providing excellent perceptual quality. In addition, a multi-time scale discriminator is utilized to minimize distortions across adjacent frames, reducing artifacts at frame edges. Also, the coder is optimized considering three sophisticated entropy models within the latent domain: the Factorized Entropy Model (FEM), the Hyperprior Model (HPM), and the Joint Hierarchical Model (JHM). Notably, the JHM enhances context modeling across frames to effectively predict components influenced by long-term dependencies. To verify the optimization performance, we conducted extensive experiments using a dataset consisting of commercial movie clips and two additional public datasets. Objective metrics consistently demonstrated that our optimized loss function and latent modeling achieved superior performance across all test datasets compared to traditional codecs such as LAME-MP3 and FDK-AAC. Subjective assessments also indicated that our system could offer comparable or superior auditory quality to FDK-AAC.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.