Multi-Modal Hybrid Encoding Approach Based on Information Bottleneck for Brain Tumor Grading

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Luyue Yu;Chengyuan Liu;Aixi Qu;Qiang Wu;Ju Liu
{"title":"Multi-Modal Hybrid Encoding Approach Based on Information Bottleneck for Brain Tumor Grading","authors":"Luyue Yu;Chengyuan Liu;Aixi Qu;Qiang Wu;Ju Liu","doi":"10.1109/LSP.2025.3528861","DOIUrl":null,"url":null,"abstract":"Grade classification of gliomas is critical in clinical diagnosis and treatment decisions. Although histological images are commonly used for grading and as an important factor in prognostic prediction, their results are prone to inter-observer variability. Recent advancements in molecular genetics have significantly improved tumor classification, but challenges persist in effective feature selection and multi-modal data fusion. This letter proposes a multi-modal hybrid encoding method based on information bottleneck (MHEIB), combining histological images and genetic data to enhance glioma grading. MHEIB effectively fuses multi-modal features through the information bottleneck module and the self-attention mechanism, which compresses and filters the key features and dynamically adjusts the weights of multi-modal features to improve the classification accuracy. Experimental results on The Cancer Genome Atlas (TCGA) glioma dataset demonstrate that MHEIB outperforms several fusion methods in terms of F1-score, AUC, and AP. In particular, MHEIB significantly improved the classification AUC to 89.3% and 83.7% for similar categories of Grades II and III respectively. Overall, the MHEIB method provides an efficient multi-modal data fusion solution for glioma grading.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"651-655"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839575/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Grade classification of gliomas is critical in clinical diagnosis and treatment decisions. Although histological images are commonly used for grading and as an important factor in prognostic prediction, their results are prone to inter-observer variability. Recent advancements in molecular genetics have significantly improved tumor classification, but challenges persist in effective feature selection and multi-modal data fusion. This letter proposes a multi-modal hybrid encoding method based on information bottleneck (MHEIB), combining histological images and genetic data to enhance glioma grading. MHEIB effectively fuses multi-modal features through the information bottleneck module and the self-attention mechanism, which compresses and filters the key features and dynamically adjusts the weights of multi-modal features to improve the classification accuracy. Experimental results on The Cancer Genome Atlas (TCGA) glioma dataset demonstrate that MHEIB outperforms several fusion methods in terms of F1-score, AUC, and AP. In particular, MHEIB significantly improved the classification AUC to 89.3% and 83.7% for similar categories of Grades II and III respectively. Overall, the MHEIB method provides an efficient multi-modal data fusion solution for glioma grading.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信