Mohammad Bokaei;Jesper Jensen;Simon Doclo;Jan Østergaard
{"title":"Low-Latency Deep Analog Speech Transmission Using Joint Source Channel Coding","authors":"Mohammad Bokaei;Jesper Jensen;Simon Doclo;Jan Østergaard","doi":"10.1109/JSTSP.2024.3521277","DOIUrl":null,"url":null,"abstract":"Low-latency configurable speech transmission presents significant challenges in modern communication systems. Traditional methods rely on separate source and channel coding, which often degrades performance under low-latency constraints. Moreover, non-configurable systems require separate training for each condition, limiting their adaptability in resource-constrained scenarios. This paper proposes a configurable low-latency deep Joint Source-Channel Coding (JSCC) system for speech transmission. The system can be configured for varying signal-to-noise ratios (SNR), wireless channel conditions, or bandwidths. A joint source-channel encoder based on deep neural networks (DNN) is used to compress and transmit analog-coded information, while a configurable decoder reconstructs speech from noisy compressed signals. The system latency is adaptable based on the input speech length, achieving a minimum latency of 2 ms, with a lightweight architecture of 25 k parameters, significantly fewer than state-of-the-art systems. The simulation results demonstrate that the proposed system outperforms conventional separate source-channel coding systems in terms of speech quality and intelligibility, particularly in low-latency and noisy channel conditions. It also shows robustness in fixed configured scenarios, though higher latency conditions and better channel environments favor traditional coding systems.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 8","pages":"1401-1413"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10824931/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Low-latency configurable speech transmission presents significant challenges in modern communication systems. Traditional methods rely on separate source and channel coding, which often degrades performance under low-latency constraints. Moreover, non-configurable systems require separate training for each condition, limiting their adaptability in resource-constrained scenarios. This paper proposes a configurable low-latency deep Joint Source-Channel Coding (JSCC) system for speech transmission. The system can be configured for varying signal-to-noise ratios (SNR), wireless channel conditions, or bandwidths. A joint source-channel encoder based on deep neural networks (DNN) is used to compress and transmit analog-coded information, while a configurable decoder reconstructs speech from noisy compressed signals. The system latency is adaptable based on the input speech length, achieving a minimum latency of 2 ms, with a lightweight architecture of 25 k parameters, significantly fewer than state-of-the-art systems. The simulation results demonstrate that the proposed system outperforms conventional separate source-channel coding systems in terms of speech quality and intelligibility, particularly in low-latency and noisy channel conditions. It also shows robustness in fixed configured scenarios, though higher latency conditions and better channel environments favor traditional coding systems.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.