Conjugate Gradient and Variance Reduction Based Online ADMM for Low-Rank Distributed Networks

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yitong Chen;Danqi Jin;Jie Chen;Cédric Richard;Wen Zhang
{"title":"Conjugate Gradient and Variance Reduction Based Online ADMM for Low-Rank Distributed Networks","authors":"Yitong Chen;Danqi Jin;Jie Chen;Cédric Richard;Wen Zhang","doi":"10.1109/LSP.2025.3531200","DOIUrl":null,"url":null,"abstract":"Modeling the relationships that may connect optimal parameter vectors is essential for the performance of parameter estimation methods in distributed networks. In this paper, we consider a low-rank relationship and introduce matrix factorization to promote this low-rank property. To devise a distributed algorithm that does not require any prior knowledge about the low-rank space, we first formulate local optimization problems at each node, which are subsequently addressed using the Alternating Direction Method of Multipliers (ADMM). Three subproblems naturally arise from ADMM, each resolved in an online manner with low computational costs. Specifically, the first one is solved using stochastic gradient descent (SGD), while the other two are handled using the conjugate gradient descent method to avoid matrix inversion operations. To further enhance performance, a variance reduction algorithm is incorporated into the SGD. Simulation results validate the effectiveness of the proposed algorithm.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"706-710"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10844354/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling the relationships that may connect optimal parameter vectors is essential for the performance of parameter estimation methods in distributed networks. In this paper, we consider a low-rank relationship and introduce matrix factorization to promote this low-rank property. To devise a distributed algorithm that does not require any prior knowledge about the low-rank space, we first formulate local optimization problems at each node, which are subsequently addressed using the Alternating Direction Method of Multipliers (ADMM). Three subproblems naturally arise from ADMM, each resolved in an online manner with low computational costs. Specifically, the first one is solved using stochastic gradient descent (SGD), while the other two are handled using the conjugate gradient descent method to avoid matrix inversion operations. To further enhance performance, a variance reduction algorithm is incorporated into the SGD. Simulation results validate the effectiveness of the proposed algorithm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信