Yuhang Feng;Ruifeng Duan;Shurui Li;Peng Cheng;Wanchun Liu
{"title":"A Dual-Branch Network With Feature Assistance for Automatic Modulation Recognition","authors":"Yuhang Feng;Ruifeng Duan;Shurui Li;Peng Cheng;Wanchun Liu","doi":"10.1109/LSP.2025.3527901","DOIUrl":null,"url":null,"abstract":"Automatic modulation recognition (AMR) is a critical technology in wireless communications, aiming to achieve high recognition accuracy with low complexity in increasingly intricate electromagnetic environments. To tackle this challenge, in this paper, we propose a dual-branch convolution cascaded transformer network with feature assistance, termed DCTFANet. To enhance the differentiation between samples, we employ the gramian angular field (GAF) to capture potential temporal correlations between each data point. Subsequently, both I/Q sequences and GAF data are input into the model for joint signal feature extraction. The network backbone is constructed using multiple improved depthwise separable convolution (DSC) blocks, which significantly reduce computational complexity. Moreover, the backbone depth is flexibly adjustable to fully exploit local features of different data types. Finally, feature transition and the transformer encoder are used to reduce parameters and extract global feature. Experimental results on RML2016.10b show that the proposed method achieves higher recognition accuracy compared to several state-of-the-art methods, especially at low signal-to-noise ratios (SNRs), with an increase of at least 10.80% at −20 dB.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"701-705"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10834595/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic modulation recognition (AMR) is a critical technology in wireless communications, aiming to achieve high recognition accuracy with low complexity in increasingly intricate electromagnetic environments. To tackle this challenge, in this paper, we propose a dual-branch convolution cascaded transformer network with feature assistance, termed DCTFANet. To enhance the differentiation between samples, we employ the gramian angular field (GAF) to capture potential temporal correlations between each data point. Subsequently, both I/Q sequences and GAF data are input into the model for joint signal feature extraction. The network backbone is constructed using multiple improved depthwise separable convolution (DSC) blocks, which significantly reduce computational complexity. Moreover, the backbone depth is flexibly adjustable to fully exploit local features of different data types. Finally, feature transition and the transformer encoder are used to reduce parameters and extract global feature. Experimental results on RML2016.10b show that the proposed method achieves higher recognition accuracy compared to several state-of-the-art methods, especially at low signal-to-noise ratios (SNRs), with an increase of at least 10.80% at −20 dB.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.