Explicit Bandwidth Learning for FOREX Trading Using Deep Reinforcement Learning

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Angelos Nalmpantis;Nikolaos Passalis;Anastasios Tefas
{"title":"Explicit Bandwidth Learning for FOREX Trading Using Deep Reinforcement Learning","authors":"Angelos Nalmpantis;Nikolaos Passalis;Anastasios Tefas","doi":"10.1109/LSP.2025.3528365","DOIUrl":null,"url":null,"abstract":"Financial time series are sequences of price observations related to financial assets collected over time. Deep Learning (DL) is currently standing as the predominant approach for addressing various time series tasks, including problems in finance, such as the development of trading agents using Deep Reinforcement Learning (DRL). However, the noisy and temporal nature of such data as well as their non-stationarity pose substantial challenges to current methodologies. DL models suffer from overfitting noise, frequently arising from the absence of strong priors. In this paper, we address the instability of trading DRL agents due to noise by proposing an end-to-end hybrid trainable filtering and feature extraction approach. The proposed method employs Gaussian filters as priors and can be attached at the beginning of any DL architecture forming a hybrid model-based and data-driven model that can directly process the raw input data. The bandwidth of the filters is determined through the learning process, ultimately allowing the agent to autonomously determine the optimal bandwidth for the task and data at hand, without requiring any additional supervision. Moreover, the proposed method leverages high-order derivatives to address the non-stationarity of financial data and provides multiple views of the input signal efficiently utilized by the subsequent model. We conduct experiments with a plethora of financial assets from the Foreign Exchange Market (FOREX) and demonstrate the method's efficiency when compared to alternative processing pipelines.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"686-690"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839129/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Financial time series are sequences of price observations related to financial assets collected over time. Deep Learning (DL) is currently standing as the predominant approach for addressing various time series tasks, including problems in finance, such as the development of trading agents using Deep Reinforcement Learning (DRL). However, the noisy and temporal nature of such data as well as their non-stationarity pose substantial challenges to current methodologies. DL models suffer from overfitting noise, frequently arising from the absence of strong priors. In this paper, we address the instability of trading DRL agents due to noise by proposing an end-to-end hybrid trainable filtering and feature extraction approach. The proposed method employs Gaussian filters as priors and can be attached at the beginning of any DL architecture forming a hybrid model-based and data-driven model that can directly process the raw input data. The bandwidth of the filters is determined through the learning process, ultimately allowing the agent to autonomously determine the optimal bandwidth for the task and data at hand, without requiring any additional supervision. Moreover, the proposed method leverages high-order derivatives to address the non-stationarity of financial data and provides multiple views of the input signal efficiently utilized by the subsequent model. We conduct experiments with a plethora of financial assets from the Foreign Exchange Market (FOREX) and demonstrate the method's efficiency when compared to alternative processing pipelines.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信