Lightweight Efficient Rate-Adaptive Network for Compression-Aware Image Rescaling

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Dingyi Li;Yang Zhang;Yu Liu
{"title":"Lightweight Efficient Rate-Adaptive Network for Compression-Aware Image Rescaling","authors":"Dingyi Li;Yang Zhang;Yu Liu","doi":"10.1109/LSP.2025.3530853","DOIUrl":null,"url":null,"abstract":"Compression-aware image rescaling approaches convert high-resolution images to compressed low-resolution ones to fit various display devices or save bandwidth/storage. Inverse upscaling is successively performed to enlarge the low-resolution images to the original sizes with rich details. However, previous compression-aware image rescaling methods lack adaptivity to diverse compression rates, or require multiple large models with huge computational cost for adjusting. To overcome these challenges, we propose a lightweight efficient rate-adaptive network (LERAN) for compression-aware image rescaling. We design a non-invertible framework based on quality factor-driven feature modulation modules and an expandable training strategy, to achieve the adaptivity to various compression rates with only one light and efficient model. Moreover, alternative recursive blocks are presented for lighter weights with very small performance drop. During training, we also introduce a sparse low-resolution residual feature loss which promotes easier convergence of the model without adding further computational burden. Extensive experimental results demonstrate that our method significantly outperforms state-of-the-art compression-aware image rescaling approaches for different compression rates on popular benchmarks, with an all-in-one lightweight model and much faster speed.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"691-695"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10843843/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Compression-aware image rescaling approaches convert high-resolution images to compressed low-resolution ones to fit various display devices or save bandwidth/storage. Inverse upscaling is successively performed to enlarge the low-resolution images to the original sizes with rich details. However, previous compression-aware image rescaling methods lack adaptivity to diverse compression rates, or require multiple large models with huge computational cost for adjusting. To overcome these challenges, we propose a lightweight efficient rate-adaptive network (LERAN) for compression-aware image rescaling. We design a non-invertible framework based on quality factor-driven feature modulation modules and an expandable training strategy, to achieve the adaptivity to various compression rates with only one light and efficient model. Moreover, alternative recursive blocks are presented for lighter weights with very small performance drop. During training, we also introduce a sparse low-resolution residual feature loss which promotes easier convergence of the model without adding further computational burden. Extensive experimental results demonstrate that our method significantly outperforms state-of-the-art compression-aware image rescaling approaches for different compression rates on popular benchmarks, with an all-in-one lightweight model and much faster speed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信