{"title":"DPO: Discrete Prompt Optimization for Vision-Language Models","authors":"Nanhao Liang;Yong Liu","doi":"10.1109/LSP.2025.3528362","DOIUrl":null,"url":null,"abstract":"In recent years, the emergence of large vision-language models (VLMs) has catalyzed the development of prompt learning, where networks are trained to enhance VLM performance by learning continuous prompts. However, traditional continuous prompt learning often struggles with challenges like overfitting to Base classes and a lack of interpretability due to the nature of prompt parameterization. To overcome these limitations, we introduce Discrete Prompt Optimization (DPO), a method that optimizes text prompts in discrete word-space. During training, scores are assigned to token embeddings, which are then used to select the most effective token sequence for the downstream task. DPO was tested across 11 diverse datasets, consistently outperforming baseline methods like CLIP and CoOp on Novel classes in most cases. This discrete approach not only reduces overfitting but also enhances transparency and model interpretability, enabling the learning of dataset-specific text prompts that are easily understandable.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"671-675"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839035/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the emergence of large vision-language models (VLMs) has catalyzed the development of prompt learning, where networks are trained to enhance VLM performance by learning continuous prompts. However, traditional continuous prompt learning often struggles with challenges like overfitting to Base classes and a lack of interpretability due to the nature of prompt parameterization. To overcome these limitations, we introduce Discrete Prompt Optimization (DPO), a method that optimizes text prompts in discrete word-space. During training, scores are assigned to token embeddings, which are then used to select the most effective token sequence for the downstream task. DPO was tested across 11 diverse datasets, consistently outperforming baseline methods like CLIP and CoOp on Novel classes in most cases. This discrete approach not only reduces overfitting but also enhances transparency and model interpretability, enabling the learning of dataset-specific text prompts that are easily understandable.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.