Series-Parallel Sequence Impedance Models of Multi-Loop Grid-Forming Converters

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaokuan Jin;Jianhua Wang;Han Yan;Xijun Ni;Zhendong Ji;Baojian Ji;Ding Wan
{"title":"Series-Parallel Sequence Impedance Models of Multi-Loop Grid-Forming Converters","authors":"Xiaokuan Jin;Jianhua Wang;Han Yan;Xijun Ni;Zhendong Ji;Baojian Ji;Ding Wan","doi":"10.35833/MPCE.2024.000676","DOIUrl":null,"url":null,"abstract":"The gradual penetration of grid-forming (GFM) converters into new power systems with renewable energy sources may result in the emergence of small-signal instability issues. These issues can be elucidated using sequence impedance models, which offer a more tangible and meaningful interpretation than dq-domain impedance models and state-space models. However, existing research has primarily focused on the impact of power loops and inner control loops in GFM converters, which has not yet elucidated the precise physical interpretation of inner voltage and current loops of GFM converters in circuits. This paper derives series-parallel sequence impedance models of multi-loop GFM converters, demonstrating that the voltage loop can be regarded as a parallel impedance and the current loop as a series impedance. Consequently, the corre-sponding small-signal stability characteristics can be identified through Bode diagrams of sequence impedances or by examining the physical meanings of impedances in series and in parallel. The results indicate that the GFM converter with a single power loop is a candidate suitable for application in new power systems, given its reduced number of control parameters and enhanced low-frequency performance, particularly in weak grids. The results of PLECS simulations and corresponding prototype experiments verify the accuracy of the analytical analysis under diverse grid conditions.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"29-41"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855724","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10855724/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The gradual penetration of grid-forming (GFM) converters into new power systems with renewable energy sources may result in the emergence of small-signal instability issues. These issues can be elucidated using sequence impedance models, which offer a more tangible and meaningful interpretation than dq-domain impedance models and state-space models. However, existing research has primarily focused on the impact of power loops and inner control loops in GFM converters, which has not yet elucidated the precise physical interpretation of inner voltage and current loops of GFM converters in circuits. This paper derives series-parallel sequence impedance models of multi-loop GFM converters, demonstrating that the voltage loop can be regarded as a parallel impedance and the current loop as a series impedance. Consequently, the corre-sponding small-signal stability characteristics can be identified through Bode diagrams of sequence impedances or by examining the physical meanings of impedances in series and in parallel. The results indicate that the GFM converter with a single power loop is a candidate suitable for application in new power systems, given its reduced number of control parameters and enhanced low-frequency performance, particularly in weak grids. The results of PLECS simulations and corresponding prototype experiments verify the accuracy of the analytical analysis under diverse grid conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信