{"title":"Frequency Deadband Control of Grid-forming Energy Storage Inverter in Primary Frequency Regulation","authors":"Wei Zhang;Zhenxiong Wang;Yingjie Peng;Jingting Wu;Qiru Li;Hao Yi;Zebin Yang;Li Li;Fang Zhuo","doi":"10.35833/MPCE.2024.000757","DOIUrl":null,"url":null,"abstract":"With the increased penetration of renewable energy sources, the grid-forming (GFM) energy storage (ES) has been considered to engage in primary frequency regulation (PFR), often necessitating the use of a frequency deadband (FDB) to prevent excessive battery charging cycling and miti-gate frequency oscillations. Implementing the FDB is relatively straightforward in grid-following (GFL) control. However, implementing the FDB in GFM control presents a significant challenge since the inverter must abstain from providing active power at any frequency within the FDB. Therefore, in this paper, the performance of PFR control in the GFM-ES inverter is analyzed in detail first. Then, the FDB is implemented for GFM inverters with various types of synchronization methods, and the need for inertia response is also considered. Moreover, given the risk of oscillations near the FDB boundary, different FDB setting methods are proposed and examined, where an improved triangular hysteresis method is proposed to realize the fast response and enhanced stability. Finally, the simulation and experiment results are provided to verify the effectiveness of the above methods.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"167-178"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855741","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10855741/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the increased penetration of renewable energy sources, the grid-forming (GFM) energy storage (ES) has been considered to engage in primary frequency regulation (PFR), often necessitating the use of a frequency deadband (FDB) to prevent excessive battery charging cycling and miti-gate frequency oscillations. Implementing the FDB is relatively straightforward in grid-following (GFL) control. However, implementing the FDB in GFM control presents a significant challenge since the inverter must abstain from providing active power at any frequency within the FDB. Therefore, in this paper, the performance of PFR control in the GFM-ES inverter is analyzed in detail first. Then, the FDB is implemented for GFM inverters with various types of synchronization methods, and the need for inertia response is also considered. Moreover, given the risk of oscillations near the FDB boundary, different FDB setting methods are proposed and examined, where an improved triangular hysteresis method is proposed to realize the fast response and enhanced stability. Finally, the simulation and experiment results are provided to verify the effectiveness of the above methods.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.