Low-Frequency Oscillations and Resonance Analysis of VSG-Controlled PMSG-based Wind Generation Systems

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yizhuo Ma;Jin Xu;Chenxiang Gao;Guojie Li;Keyou Wang
{"title":"Low-Frequency Oscillations and Resonance Analysis of VSG-Controlled PMSG-based Wind Generation Systems","authors":"Yizhuo Ma;Jin Xu;Chenxiang Gao;Guojie Li;Keyou Wang","doi":"10.35833/MPCE.2024.000465","DOIUrl":null,"url":null,"abstract":"With good adaptability to weak power grids, the grid-forming inverter becomes the foundation of future power grids with high-proportion renewable energy. Moreover, the virtual synchronous generator (VSG) control is recognized as the mainstream control strategy for grid-forming inverters. For permanent magnet synchronous generator (PMSG) based wind generation systems connected to power grid via VSG-controlled grid-forming inverters, some novel impacts on the low-frequency oscillations (LFOs) emerge in power grids. The first impact involves the negative/positive damping effect on LFOs. In this paper, the small-signal torque model of VSG-controlled PMSG-based wind generation systems is established based on the damping torque analysis method, revealing the influence mechanism of machine-side dynamics on LFOs and proving the necessity of the double-mass model for accurate stability analysis. The second impact is the resonance effect between torsional oscillation and LFOs. Subsequently, this paper uses the open-loop resonance analysis method to study the resonance mechanism and to predict the root trajectory. Then, a damping enhancement strategy is proposed to weaken and eliminate the negative damping effect of machine-side dynamics on LFOs and the resonance effect between torsional oscillation and LFOs. Finally, the analysis result is validated through a case study involving the connection of the VSG-controlled PMSG-based wind generation system to the IEEE 39-bus AC grid, supporting the industrial application and stable operation of VSG-controlled PMSG-based wind generation systems.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"115-127"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10734987","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10734987/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With good adaptability to weak power grids, the grid-forming inverter becomes the foundation of future power grids with high-proportion renewable energy. Moreover, the virtual synchronous generator (VSG) control is recognized as the mainstream control strategy for grid-forming inverters. For permanent magnet synchronous generator (PMSG) based wind generation systems connected to power grid via VSG-controlled grid-forming inverters, some novel impacts on the low-frequency oscillations (LFOs) emerge in power grids. The first impact involves the negative/positive damping effect on LFOs. In this paper, the small-signal torque model of VSG-controlled PMSG-based wind generation systems is established based on the damping torque analysis method, revealing the influence mechanism of machine-side dynamics on LFOs and proving the necessity of the double-mass model for accurate stability analysis. The second impact is the resonance effect between torsional oscillation and LFOs. Subsequently, this paper uses the open-loop resonance analysis method to study the resonance mechanism and to predict the root trajectory. Then, a damping enhancement strategy is proposed to weaken and eliminate the negative damping effect of machine-side dynamics on LFOs and the resonance effect between torsional oscillation and LFOs. Finally, the analysis result is validated through a case study involving the connection of the VSG-controlled PMSG-based wind generation system to the IEEE 39-bus AC grid, supporting the industrial application and stable operation of VSG-controlled PMSG-based wind generation systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信