Jidong Xu;Jun Zeng;Gengning Ying;Minhai Wu;Junfeng Liu
{"title":"Virtual Power Angle Synchronous Control for Improving Transient Stability of Grid-Forming Converters","authors":"Jidong Xu;Jun Zeng;Gengning Ying;Minhai Wu;Junfeng Liu","doi":"10.35833/MPCE.2024.000684","DOIUrl":null,"url":null,"abstract":"The increasing adoption of grid-forming converters (GFMCs) stems from their capacity to furnish voltage and frequency support for power grids. Nevertheless, GFMCs employing the current reference saturation limiting method often exhibit instability during various transient disturbances including grid voltage sags, frequency variations, and phase jumps. To address this problem, this paper proposes a virtual power angle synchronous <tex>$(\\delta_{v}-\\text{SYN})$</tex> control method. The fundamental of this method is to achieve synchronization with the grid using the virtual power angle <tex>$\\delta_{v}$</tex> instead of the active power. The transient stability characteristics of the proposed method are theoretically elucidated using a novel virtual power angle-power angle <tex>$(\\delta_{v}- \\delta )$</tex> model. The key benefit of the proposed method is its robustness to various grid strengths and diverse forms of transient disturbances, eliminating the requirement for fault identification or control switching. Moreover, it can offer grid-forming support to the grid during grid faults. Hardware-in-the-loop experimental results validate the theoretical analysis and the performance of the proposed method.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"142-153"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10785253","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10785253/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing adoption of grid-forming converters (GFMCs) stems from their capacity to furnish voltage and frequency support for power grids. Nevertheless, GFMCs employing the current reference saturation limiting method often exhibit instability during various transient disturbances including grid voltage sags, frequency variations, and phase jumps. To address this problem, this paper proposes a virtual power angle synchronous $(\delta_{v}-\text{SYN})$ control method. The fundamental of this method is to achieve synchronization with the grid using the virtual power angle $\delta_{v}$ instead of the active power. The transient stability characteristics of the proposed method are theoretically elucidated using a novel virtual power angle-power angle $(\delta_{v}- \delta )$ model. The key benefit of the proposed method is its robustness to various grid strengths and diverse forms of transient disturbances, eliminating the requirement for fault identification or control switching. Moreover, it can offer grid-forming support to the grid during grid faults. Hardware-in-the-loop experimental results validate the theoretical analysis and the performance of the proposed method.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.