Method to Determine Quantization-Related Parameters of the Digital-to-Time Converter in a Fractional-N Frequency Synthesizer

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xu Wang;Michael Peter Kennedy
{"title":"Method to Determine Quantization-Related Parameters of the Digital-to-Time Converter in a Fractional-N Frequency Synthesizer","authors":"Xu Wang;Michael Peter Kennedy","doi":"10.1109/TCSI.2024.3481904","DOIUrl":null,"url":null,"abstract":"Digital-to-time converters (DTC’s) used in fractional-N frequency synthesizers attempt to cancel the accumulated quantization error (QE) introduced by the divider controller with a view to recovering the integer-N phase noise (PN) performance. The resolution of the DTC needs to be sufficiently fine to suppress its own QE below the intrinsic integer-N jitter and, at the same time, sufficiently coarse to limit the DTC’s hardware needs. In this manuscript, we propose optimal strategies to determine the effective dynamic range, number of bits, quantization resolution, and unity delay of the DTC to achieve these goals; the additional jitter power introduced by input-dithered quantization methods to eliminate DTC-quantization-induced spurs is also considered. DTCs parameterized following these strategies can come close to realizing the spur-free integer-N PN with minimum hardware. Behavioral simulations confirm our analysis.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 2","pages":"708-718"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10736006/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Digital-to-time converters (DTC’s) used in fractional-N frequency synthesizers attempt to cancel the accumulated quantization error (QE) introduced by the divider controller with a view to recovering the integer-N phase noise (PN) performance. The resolution of the DTC needs to be sufficiently fine to suppress its own QE below the intrinsic integer-N jitter and, at the same time, sufficiently coarse to limit the DTC’s hardware needs. In this manuscript, we propose optimal strategies to determine the effective dynamic range, number of bits, quantization resolution, and unity delay of the DTC to achieve these goals; the additional jitter power introduced by input-dithered quantization methods to eliminate DTC-quantization-induced spurs is also considered. DTCs parameterized following these strategies can come close to realizing the spur-free integer-N PN with minimum hardware. Behavioral simulations confirm our analysis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信