A Comprehensive Approach to Improving the Thermal Reliability of RTN-Based PUFs

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
F. de Los Santos-Prieto;F. J. Rubio-Barbero;R. Castro-Lopez;E. Roca;F. V. Fernandez
{"title":"A Comprehensive Approach to Improving the Thermal Reliability of RTN-Based PUFs","authors":"F. de Los Santos-Prieto;F. J. Rubio-Barbero;R. Castro-Lopez;E. Roca;F. V. Fernandez","doi":"10.1109/TCSI.2024.3458057","DOIUrl":null,"url":null,"abstract":"Silicon Physical Unclonable Functions (PUFs) have emerged as a promising solution for generating cryptographic keys in low-cost resource-constrained devices. A PUF is expected to be reliable, meaning that its response bits should remain consistent each time the corresponding challenges are queried. Unfortunately, the stability of these challenge-response pairs (CRPs) can be seriously eroded by environmental factors like temperature variations and the aging of the integrated circuits implementing the PUF. Several approaches, including bit masking, bit selection techniques, and error-correcting codes, have been proposed to obtain a reliable PUF operation in the face of temperature variations. As for aging, a new kind of aging-resilient silicon PUF has been reported that uses the time-varying phenomenon known as Random Telegraph Noise (RTN) as the underlying entropy source. Although this type of PUF preserves its reliability well when aged, it is not immune to the impact of temperature variations. The work presented here shows that it is possible to improve the thermal reliability of RTN-based PUFs with a proper combination of (a) a novel optimization-based bit selection technique, that is also applicable to other types of PUFs based on differential measurements; and (b) a temperature-aware tuning of the entropy-harvesting function.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 2","pages":"661-670"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705353/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon Physical Unclonable Functions (PUFs) have emerged as a promising solution for generating cryptographic keys in low-cost resource-constrained devices. A PUF is expected to be reliable, meaning that its response bits should remain consistent each time the corresponding challenges are queried. Unfortunately, the stability of these challenge-response pairs (CRPs) can be seriously eroded by environmental factors like temperature variations and the aging of the integrated circuits implementing the PUF. Several approaches, including bit masking, bit selection techniques, and error-correcting codes, have been proposed to obtain a reliable PUF operation in the face of temperature variations. As for aging, a new kind of aging-resilient silicon PUF has been reported that uses the time-varying phenomenon known as Random Telegraph Noise (RTN) as the underlying entropy source. Although this type of PUF preserves its reliability well when aged, it is not immune to the impact of temperature variations. The work presented here shows that it is possible to improve the thermal reliability of RTN-based PUFs with a proper combination of (a) a novel optimization-based bit selection technique, that is also applicable to other types of PUFs based on differential measurements; and (b) a temperature-aware tuning of the entropy-harvesting function.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信