Design and Optimization of Stacked High Temperature Superconductor Cable System for Space Solar Power Station

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hao Yu;Fangjing Weng;Yutong Fu;Weihang Peng;Yue Zhao;Yawei Wang
{"title":"Design and Optimization of Stacked High Temperature Superconductor Cable System for Space Solar Power Station","authors":"Hao Yu;Fangjing Weng;Yutong Fu;Weihang Peng;Yue Zhao;Yawei Wang","doi":"10.1109/TASC.2024.3525446","DOIUrl":null,"url":null,"abstract":"Compared to traditional metal cable, high-temperature superconductor (HTS) cable is a promising candidate for the energy transmission in space solar power stations due to its great advantage in high power density and efficiency. These cables can reduce energy losses and simplify the conventional cable transmission by eliminating the need for voltage conversion equipment, thus reducing the launch weight and costs of spacecraft. This paper analyzes the feasibility of superconducting cable power transmission in space spacecraft energy transfer. Addressing the operating conditions of vacuum and cryogenic temperatures for space satellites and the performance indicators required by research projects, this study introduces the overall systematic design scheme of the HTS cable experimental platform simulating a space environment. The design methods for HTS stacked tape round-core cables are discussed, and cable design schemes for the temperature range of 15 K to 77 K are presented. Low-resistance joint designs for the cables have been proposed, and simulation thermal stability analysis has been conducted in combination with the helium cryogenic system.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-7"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10820949/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to traditional metal cable, high-temperature superconductor (HTS) cable is a promising candidate for the energy transmission in space solar power stations due to its great advantage in high power density and efficiency. These cables can reduce energy losses and simplify the conventional cable transmission by eliminating the need for voltage conversion equipment, thus reducing the launch weight and costs of spacecraft. This paper analyzes the feasibility of superconducting cable power transmission in space spacecraft energy transfer. Addressing the operating conditions of vacuum and cryogenic temperatures for space satellites and the performance indicators required by research projects, this study introduces the overall systematic design scheme of the HTS cable experimental platform simulating a space environment. The design methods for HTS stacked tape round-core cables are discussed, and cable design schemes for the temperature range of 15 K to 77 K are presented. Low-resistance joint designs for the cables have been proposed, and simulation thermal stability analysis has been conducted in combination with the helium cryogenic system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信